login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions into pairs.
(Formerly M4263)
1

%I M4263 #21 Sep 25 2018 21:12:01

%S 1,6,55,610,7980,120274,2052309,39110490,823324755,18974858540,

%T 475182478056,12848667150956,373081590628565,11578264139795430,

%U 382452947343624515,13397354334102974934,496082324933446766724,19360538560004548357830,794275868644522931369185

%N Number of partitions into pairs.

%D G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonne, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%F a(n) = A079267(n + 2, 3). - _Sean A. Irvine_, Jan 24 2017

%F a(n) ~ 2^(n + 3/2) * n^(n + 2) / (3 * exp(n + 1)). - _Vaclav Kotesovec_, May 20 2018

%p a:= proc(n) option remember; `if`(n<2, n,

%p (n*(4*n^2-7)*a(n-1)+(n+1)*(2*n+1)*a(n-2))/((2*n-1)*(n-1)))

%p end:

%p seq(a(n), n=1..20); # _Alois P. Heinz_, Jan 24 2017

%t Table[(2*n+1)! * Hypergeometric1F1[1-n, -1-2*n, -2] / (3*2^n*(n-1)!), {n, 1, 20}] (* _Vaclav Kotesovec_, Jan 24 2017 *)

%Y Cf. A079267.

%K nonn

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Jan 24 2017