login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376176
G.f. satisfies: x = A( x - A(x)^4/x^2 ).
1
1, 1, 6, 55, 622, 8015, 113164, 1711898, 27357970, 457507917, 7952476482, 142972019125, 2648639456048, 50415218306637, 983728646223556, 19641163430509505, 400671660024507294, 8340743906266061866, 176998642509849677206, 3825680705425292568049, 84159282700462688412042
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = A( x - A(x)^4/x^2 ).
(2) A(x)^3 = x*A(x)^2 + A(A(x))^4.
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(4*n)/x^(2*n) / n!.
(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(4*n)/x^(2*n+1) / n! ).
EXAMPLE
G.f.: A(x) = x + x^2 + 6*x^3 + 55*x^4 + 622*x^5 + 8015*x^6 + 113164*x^7 + 1711898*x^8 + 27357970*x^9 + 457507917*x^10 + ...
where x = A( x - A(x)^4/x^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 13*x^4 + 122*x^5 + 1390*x^6 + 17934*x^7 + 252847*x^8 + 3814724*x^9 + ...
A(x)^3 = x^3 + 3*x^4 + 21*x^5 + 202*x^6 + 2322*x^7 + 30030*x^8 + 423111*x^9 + 6369930*x^10 + ...
where A(x)^3 = x*A(x)^2 + A(A(x))^4.
A(x)^4 = x^4 + 4*x^5 + 30*x^6 + 296*x^7 + 3437*x^8 + 44600*x^9 + 628454*x^10 + 9446280*x^11 + ...
A(A(x))^4 = x^4 + 8*x^5 + 80*x^6 + 932*x^7 + 12096*x^8 + 170264*x^9 + 2555206*x^10 + 40413484*x^11 + ...
where A(x) = x + A(A(x))^4 / A(x)^2.
A(A(x)) = x + 2*x^2 + 14*x^3 + 141*x^4 + 1712*x^5 + 23392*x^6 + 347444*x^7 + 5498681*x^8 + 91552406*x^9 + ...
A(A(x))^2/A(x) = x + 3*x^2 + 23*x^3 + 242*x^4 + 3017*x^5 + 41965*x^6 + 631381*x^7 + 10089533*x^8 + 169256922*x^9 + ...
PROG
(PARI) {a(n) = my(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^4/x^2 +x*O(x^n))); polcoeff(A, n))}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(4*m)/x^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D}
{a(n) = my(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(4*m)/x^(2*m+1))/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A213639.
Sequence in context: A372210 A365840 A006200 * A243691 A151345 A281596
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2024
STATUS
approved