login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376175
E.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^3.
2
1, 1, 7, 97, 2035, 57445, 2042215, 87651865, 4410770875, 254705483725, 16603869256975, 1206175463317825, 96627476254984675, 8463175473211383925, 804573717383525464375, 82513390092813146091625, 9080444173122231239204875, 1067360792025339122846660125, 133468583774114314367364097375
OFFSET
1,3
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! satisfies:
(1) A(x) = Series_Reversion( Integral( dx/D(x) ) ) where D(x) = 1 + x*D(x)^3 is the g.f. of A001764.
(2) A'(x) = Sum_{n>=0} A001764(n)*A(x)^n where A001764(n) = binomial(3*n,n)/(2*n+1).
(3) A'(x) = 1 + A(x)*A'(x)^3.
(4) A'(x) = 1/(1 - A(x)*A'(x)^2).
(5) A(x) = x + Sum_{n>=0} d^n/dx^n G(x)^(n+1)/(n+1)!, where G(x) = Integral( x*D(x)^2 dx ) and D(x) = 1 + x*D(x)^3.
(6) A(x - B(x)) = x where B(x) = Sum_{n>=0} binomial(3*n+1,n) * x^(n+2) / ((n+1)*(n+2)).
a(n) ~ 2^(2*n - 6) * 3^(4*n - 7/2) * n^(n-2) / (exp(n) * 43^(n - 3/2)). - Vaclav Kotesovec, Sep 14 2024
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 7*x^3/3! + 97*x^4/4! + 2035*x^5/5! + 57445*x^6/6! + 2042215*x^7/7! + 87651865*x^8/8! + 4410770875*x^9/9! + ...
where A'(x) = 1 + A(x)*A'(x)^3.
Also,
A'(x) = 1 + A(x) + 3*A(x)^2 + 12*A(x)^3 + 55*A(x)^4 + 273*A(x)^5 + 1428*A(x)^6 + 7752*A(x)^7 + ... + A001764(n)*A(x)^n + ...
RELATED SERIES.
Series D(x) = 1 + x*D(x)^3 begins
D(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + ... + A001764(n)*x^n + ...
where Integral( dx/D(x) ) = x - x^2/2! - 4*x^3/3! - 42*x^4/4! - 720*x^5/5! - 17160*x^6/6! - 524160*x^7/7! - 19535040*x^8/8! + ...
and A(x) = Series_Reversion( Integral( dx/D(x) ) ).
A'(x)^3 = 1 + 3*x + 27*x^2/2! + 423*x^3/3! + 9567*x^4/4! + 284355*x^5/5! + 10499715*x^6/6! + 464006655*x^7/7! + ...
PROG
(PARI) /* A'(x) = 1 + A(x)*A'(x)^3 */
{a(n) = my(A=x); for(i=1, n, A = intformal(1 + A*(A')^3 + x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
(PARI) /* A(x) = Series_Reversion( Integral( dx/D ) ) where D = 1 + x*D^3 */
{a(n) = my(D = ((1/x)*serreverse(x/(1 + x + x*O(x^n))^3))^(1/3), A); A = serreverse(intformal(1/D)); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 13 2024
STATUS
approved