login
A376172
Numbers whose prime factorization has an even minimum exponent.
2
1, 4, 9, 16, 25, 36, 49, 64, 72, 81, 100, 108, 121, 144, 169, 196, 200, 225, 256, 288, 289, 324, 361, 392, 400, 441, 484, 500, 529, 576, 625, 675, 676, 729, 784, 800, 841, 900, 961, 968, 972, 1024, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1369, 1372, 1444
OFFSET
1,2
COMMENTS
Numbers k such that A051904(k) is even.
The minimum exponent in the prime factorization of 1 is considered to be A051904(1) = 0, and therefore 1 is a term of this sequence.
FORMULA
Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=1} (-1)^(k+1) * s(k) = 1.70559662202357112914..., where s(k) = Product_{p prime} (1 + 1/(p^k*(p-1))).
MATHEMATICA
seq[lim_] := Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}], # == 1 || EvenQ[Min[FactorInteger[#][[;; , 2]]]] &]; seq[2000]
PROG
(PARI) is(k) = {my(f = factor(k), e = f[, 2]); !(#e) || (ispowerful(f) && !(vecmin(e) % 2)); }
CROSSREFS
Subsequence of A001694.
Complement of A376173 within A001694.
Subsequences: A001248, A062503, A325240.
Cf. A051904.
Sequence in context: A292677 A292678 A072595 * A334832 A169669 A111707
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 13 2024
STATUS
approved