login
A376171
Powerful numbers whose prime factorization has an odd maximum exponent.
2
8, 27, 32, 72, 108, 125, 128, 200, 216, 243, 288, 343, 392, 500, 512, 675, 800, 864, 968, 972, 1000, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1800, 1944, 2048, 2187, 2197, 2312, 2592, 2700, 2744, 2888, 3087, 3125, 3200, 3267, 3375, 3456, 3528, 3872, 3888, 4000
OFFSET
1,1
COMMENTS
Subsequence of A102834 and first differs from it at n = 14: A102834(14) = 432 = 2^4 * 3^3 is not a term of this sequence.
Powerful numbers k such that A051903(k) is odd.
Equivalently, numbers whose prime factorization exponents are all larger than 1 and their maximum is odd. The maximum exponent in the prime factorization of 1 is considered to be A051903(1) = 0, and therefore 1 is not a term of this sequence.
The numbers of terms that do not exceed the 10^k-powerful number (A376092(k)), for k = 1, 2, ..., are 3, 40, 416, 4255, 42829, 429393, 4299797, 43022803, ... . Apparently, the asymptotic density of this sequence within the powerful numbers (A001694) exists and approximately equals 0.43.
FORMULA
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} (-1)^k * s(k) = 0.29116340833243888282..., where s(k) = Product_{p prime} (1 + Sum_{i=2..k} 1/p^i).
MATHEMATICA
seq[lim_] := Select[Union@ Flatten@ Table[i^2 * j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}], # > 1 && OddQ[Max[FactorInteger[#][[;; , 2]]]] &]; seq[10^4]
PROG
(PARI) is(k) = {my(f = factor(k), e = f[, 2]); #e && ispowerful(f) && vecmax(e) % 2; }
CROSSREFS
Complement of A376170 within A001694.
Intersection of A001694 and A376142.
Subsequence of A102834.
Subsequences: A030078, A050997, A079395, A092759, A138031, A179665, A335988 \ {1}.
Sequence in context: A354179 A262675 A102834 * A370786 A377820 A116002
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 13 2024
STATUS
approved