login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376174
E.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^4.
2
1, 1, 9, 165, 4629, 175689, 8424801, 488756205, 33292495341, 2605108910481, 230300167685049, 22701604019859765, 2468971586334241989, 293687751861227612889, 37930838135497768301841, 5286141242516127169100925, 790686768925097978507354781, 126349187477795223746580576801
OFFSET
1,3
COMMENTS
In general, if k > 1 and e.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^k, then a(n) ~ k^(k/2 + 1) * (k^(k+1)*(k+1))^(n - 3/2) * n^(n-2) / ((k-1)^((k+3)/2) * ((k-1)^(k+1) + k^k)^(n - 3/2) * exp(n)). - Vaclav Kotesovec, Sep 17 2024
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! satisfies:
(1) A(x) = Series_Reversion( Integral( dx/D(x) ) ) where D(x) = 1 + x*D(x)^4 is the g.f. of A002293.
(2) A'(x) = Sum_{n>=0} A002293(n)*A(x)^n where A002293(n) = binomial(4*n,n)/(3*n+1).
(3) A'(x) = 1 + A(x)*A'(x)^4.
(4) A'(x) = 1/(1 - A(x)*A'(x)^3).
(5) A(x) = x + Sum_{n>=0} d^n/dx^n G(x)^(n+1)/(n+1)!, where G(x) = Integral( x*D(x)^3 dx ) and D(x) = 1 + x*D(x)^4.
(6) A(x - B(x)) = x where B(x) = Sum_{n>=0} binomial(4*n+2,n) * x^(n+2) / ((n+1)*(n+2)).
a(n) ~ 2^(10*n-9) * 5^(n - 3/2) * n^(n-2) / (3^(7/2) * exp(n) * 499^(n - 3/2)). - Vaclav Kotesovec, Sep 17 2024
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 9*x^3/3! + 165*x^4/4! + 4629*x^5/5! + 175689*x^6/6! + 8424801*x^7/7! + 488756205*x^8/8! + 33292495341*x^9/9! + ...
where A'(x) = 1 + A(x)*A'(x)^4.
Also,
A'(x) = 1 + A(x) + 4*A(x)^2 + 22*A(x)^3 + 140*A(x)^4 + 969*A(x)^5 + 7084*A(x)^6 + 53820*A(x)^7 + ... + A002293(n)*A(x)^n + ...
RELATED SERIES.
Series D(x) = 1 + x*D(x)^4 begins
D(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 + 53820*x^7 + ... + A002293(n)*x^n + ...
where Integral( dx/D(x) ) = x - x^2/2! - 6*x^3/3! - 90*x^4/4! - 2184*x^5/5! - 73440*x^6/6! - 3160080*x^7/7! - 165765600*x^8/8! + ...
and A(x) = Series_Reversion( Integral( dx/D(x) ) ).
A'(x)^4 = 1 + 4*x + 48*x^2/2! + 1008*x^3/3! + 30672*x^4/4! + 1229616*x^5/5! + 61348752*x^6/6! + 3668121072*x^7/7! + ...
MATHEMATICA
nmax = 20; B[_] = 1; Do[B[x_] = 1 + Integrate[B[x], x]*B[x]^4 + O[x]^nmax // Normal, nmax]; A[x_] = Integrate[B[x], x]; CoefficientList[A[x]/x, x] * Range[nmax]! (* Vaclav Kotesovec, Sep 17 2024 *)
PROG
(PARI) /* A'(x) = 1 + A(x)*A'(x)^4 */
{a(n) = my(A=x); for(i=1, n, A = intformal(1 + A*(A')^4 + x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
(PARI) /* A(x) = Series_Reversion( Integral( dx/D ) ) where D = 1 + x*D^4 */
{a(n) = my(D = ((1/x)*serreverse(x/(1 + x + x*O(x^n))^4))^(1/4), A); A = serreverse(intformal(1/D)); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 14 2024
STATUS
approved