login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180254 E.g.f. A(x) satisfies: A'(x) = (1 - sqrt(1-4*A(x))) / (2*A(x)). 2
1, 1, 5, 47, 655, 12145, 281645, 7848575, 255581095, 9527142625, 400145871125, 18700514207375, 962618343061375, 54121350164907025, 3300097924150152125, 216926019220561025375, 15292057853288541700375, 1150861860384703732890625, 92099021113080260667513125 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..350

FORMULA

E.g.f. A(x) satisfies: A'(x) = 1/(1 - A(x)*A'(x)) = 1 + A(x)*A'(x)^2. - Paul D. Hanna, Jul 24 2012

E.g.f. A(x) satisfies: A'(x) = Sum_{n>=0} A000108(n)*A(x)^n where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan numbers. - Paul D. Hanna, Jul 24 2012

E.g.f.: Series_Reversion( Integral( dx/C(x) ) ) where C(x) = 1 + x*C(x)^2 is the Catalan function of A000108. - Paul D. Hanna, Dec 09 2013

Recurrence: 5*a(n) = 3*(18*n-35)*a(n-1) - 16*(3*n-8)*(3*n-7)*a(n-2). - Vaclav Kotesovec, Feb 19 2014

a(n) ~ 4 * (24/5)^(n-3/2) * n^(n-2) / exp(n). - Vaclav Kotesovec, Feb 19 2014

EXAMPLE

E.g.f.: A(x) = x + x^2/2! + 5*x^3/3! + 47*x^4/4! + 655*x^5/5! +...

where, by definition, A(x)*A'(x) = (1 - sqrt(1-4*A(x)))/2:

A(x)*A'(x) = x + 3*x^2/2! + 23*x^3/3! + 285*x^4/4! + 4885*x^5/5! +...

MATHEMATICA

terms = 20; B[_] = 1; Do[B[x_] = (1 - Sqrt[1 - 4*Integrate[B[x], x]])/ (2*Integrate[B[x], x]) + O[x]^terms // Normal, terms];

A[x_] = Integrate[B[x], x];

CoefficientList[A[x]/x, x]*Range[terms]! (* Jean-François Alcover, Feb 21 2013, updated Jan 11 2018 *)

a[1] = a[2] = 1; a[n_] := a[n] = (1/5)*(-(144*n^2*a[n-2]) + 720*n*a[n-2] + 54*n*a[n-1] - 896*a[n-2] - 105*a[n-1]); Array[a, 20] (* Jean-François Alcover, Apr 21 2016 *)

PROG

(PARI) a(n)=local(A=x); for(i=1, n, A=intformal(1/(1-A*A'+x*O(x^n)))); n!*polcoeff(A, n) \\ Paul D. Hanna, Jul 24 2012

for(n=1, 20, print1(a(n), ", "))

(PARI) a(n)=local(C=(1-sqrt(1-4*x+x^2*O(x^n)))/(2*x), A); n!*polcoeff(serreverse(intformal(1/C)), n)

for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 09 2013

CROSSREFS

Cf. A000108.

Sequence in context: A058806 A302616 A006902 * A127696 A088691 A052802

Adjacent sequences:  A180251 A180252 A180253 * A180255 A180256 A180257

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Jan 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 19:32 EDT 2020. Contains 334762 sequences. (Running on oeis4.)