login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180256
G.f. satisfies: A(x) = Sum_{n>=0} A_n(x) * A(x)^n where A_{n+1}(x) = A_n(A(x)) denotes iteration with A_0(x)=x and A'(0)=1.
0
1, 1, 3, 12, 56, 290, 1626, 9735, 61709, 411840, 2882513, 21095851, 161056199, 1280069731, 10572507465, 90590477793, 804013429416, 7380298477188, 69968725915172, 684193449404263, 6892242071154495, 71440857358236502
OFFSET
1,3
FORMULA
Let A_n(x) denote the n-th iteration of g.f. A(x), then A(x) satisfies:
. A(A(x)) = Sum_{n>=0} A_{n+1}(x) * A(A(x))^n;
. A_k(x) = Sum_{n>=0} A_{n+k-1}(x) * A_k(x)^n for all k;
. A_{-1}(x) = x - Sum_{n>=1} A_{n-1}(x)*x^n = series reversion of A(x).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 56*x^5 + 290*x^6 + 1626*x^7 +...
Coefficients in the initial ITERATIONS of g.f. A(x) begin:
A_0: [1, 0, 0, 0, 0, 0, 0, 0, 0, ...];
A_1: [1, 1, 3, 12, 56, 290, 1626, 9735, 61709, ...];
A_2: [1, 2, 8, 40, 226, 1386, 9040, 61977, 443399, ...];
A_3: [1, 3, 15, 90, 598, 4256, 31888, 248974, 2012670, ...];
A_4: [1, 4, 24, 168, 1284, 10416, 88352, 776634, 7033622, ...];
A_5: [1, 5, 35, 280, 2420, 22050, 209038, 2045481, 20551303, ...];
A_6: [1, 6, 48, 432, 4166, 42130, 441584, 4762787, 52608941, ...];
A_7: [1, 7, 63, 630, 6706, 74536, 855988, 10090920, 121577608, ...];
A_8: [1, 8, 80, 880, 10248, 124176, 1550656, 19836948, 258918284, ...]; ...
where the antidiagonal sums of the above table form the unsigned coefficients in A_{-1}(x), the series reversion of A(x), which begins:
A_{-1}(x) = x - x^2 - x^3 - 2*x^4 - 6*x^5 - 24*x^6 - 116*x^7 - 636*x^8 - 3820*x^9 - 24651*x^10 - 168914*x^11 - 1219501*x^12 -...
Coefficients in the initial POWERS of g.f. A(x) begin:
A^1: [1, 1, 3, 12, 56, 290, 1626, 9735, 61709, ...];
A^2: [1, 2, 7, 30, 145, 764, 4312, 25806, 162740, ...];
A^3: [1, 3, 12, 55, 276, 1485, 8469, 50847, 320031, ...];
A^4: [1, 4, 18, 88, 459, 2528, 14610, 88256, 555937, ...];
A^5: [1, 5, 25, 130, 705, 3981, 23365, 142345, 899500, ...];
A^6: [1, 6, 33, 182, 1026, 5946, 35497, 218508, 1387926, ...];
A^7: [1, 7, 42, 245, 1435, 8540, 51919, 323408, 2068290, ...];
A^8: [1, 8, 52, 320, 1946, 11896, 73712, 465184, 2999491, ...]; ...
where the leading n zeros in A(x)^n have been omitted.
Coefficients in the initial PRODUCTS A_n(x)*A(x)^n begin:
A_0*A^0: [1, 0, 0, 0, 0, 0, 0, 0, ...];
A_1*A^1: [1, 2, 7, 30, 145, 764, 4312, 25806, ...];
A_2*A^2: [1, 4, 19, 100, 567, 3412, 21594, 142881, ...];
A_3*A^3: [1, 6, 36, 226, 1489, 10268, 73846, 551969, ...];
A_4*A^4: [1, 8, 58, 424, 3199, 25052, 203650, 1715002, ...];
A_5*A^5: [1, 10, 85, 710, 6050, 53206, 484133, 4552426, ...];
A_6*A^6: [1, 12, 117, 1100, 10460, 102220, 1030887, 10720923, ...];
A_7*A^7: [1, 14, 154, 1610, 16912, 181958, 2015846, 22985229, ...];
A_8*A^8: [1, 16, 196, 2256, 25954, 304984, 3683120, 45697748, ...]; ...
where the antidiagonal sums in the above table forms this sequence.
PROG
(PARI) {a(n)=local(F=x+x^2, G); for(i=1, n, G=x; F=x+sum(k=1, n, (G=subst(G, x, F+x*O(x^n)))*F^k)); polcoeff(F, n)}
CROSSREFS
Sequence in context: A215252 A284712 A284713 * A369600 A027390 A349513
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2010
STATUS
approved