login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027390
Number of labeled servers of dimension 3.
1
1, 3, 12, 56, 294, 1698, 10624, 71256, 508188, 3829652, 30340464, 251647872, 2177440648, 19596586584, 182967013056, 1768251873632, 17653554391056, 181748836240944, 1926542292294592, 20996051677557888, 234959167687868256, 2696726674789023008
OFFSET
0,2
LINKS
R. Donaghey, Binomial self-inverse sequences and tangent coefficients, J. Combin. Theory, Series A, 21 (1976), 155-163.
FORMULA
E.g.f.: exp( (x*(18 + 9*x + 2*x^2))/6 ).
a(n) = 3*a(n-1) + 3*(n-1)*a(n-2) + (n-1)*(n-2)*a(n-3). - Vaclav Kotesovec, Dec 29 2012 [unless n=0, Michael Somos, May 31 2014]
a(n) ~ exp(3/2*n^(1/3)+3/2*n^(2/3)-2*n/3-3/2)*n^(2*n/3)/sqrt(3) * (1 + 3/(4*n^(1/3)) + 117/(160*n^(2/3)) - 59/(640*n)). - Vaclav Kotesovec, Dec 29 2012
EXAMPLE
G.f. = 1 + 3*x + 12*x^2 + 56*x^3 + 294*x^4 + 1698*x^5 + 10624*x^6 + ...
MATHEMATICA
Table[n!*SeriesCoefficient[E^((x*(18 + 9*x + 2*x^2))/6), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2012 *)
PROG
(Magma) I:=[1, 3, 12, 56]; [n le 3 select I[n] else 3*Self(n-1)+3*(n-2)*Self(n-2)+(n^2 -5*n+6)*Self(n-3): n in [1..25]]; // Vincenzo Librandi, Dec 31 2012
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp((18*x + 9*x^2 + 2*x^3) / 6 + x * O(x^n)), n))}; /* Michael Somos, May 31 2014 */
(PARI) {a(n) = if( n<1, n==0, 3 * a(n-1) + 3*(n-1) * a(n-2) + (n-1)*(n-2) * a(n-3))}; /* Michael Somos, May 31 2014 */
CROSSREFS
Sequence in context: A284713 A180256 A369600 * A349513 A009499 A009656
KEYWORD
nonn
STATUS
approved