The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062503 Squarefree numbers squared. 30
 1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also, except for the initial term, numbers whose prime factors are squared. - Cino Hilliard, Jan 25 2006 Also cubefree numbers that are squares. - Gionata Neri, May 08 2016 All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (term of this sequence), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on. - Peter Munn, Mar 12 2020 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 FORMULA Numbers k such that Sum_{d|k} mu(d)*mu(k/d) = 1. - Benoit Cloitre, Mar 03 2004 a(n) = A000290(A005117(n)); A227291(a(n)) = 1. - Reinhard Zumkeller, Jul 07 2013 A000290 \ A062320. - R. J. Mathar, Jul 27 2013 a(n) ~ (Pi^4/36) * n^2. - Charles R Greathouse IV, Nov 24 2015 a(n) = A046692(a(n))^2. - Torlach Rush, Jan 05 2019 For all k in the sequence, Omega(k) = 2*omega(k). - Wesley Ivan Hurt, Apr 30 2020 Sum_{n>=1} 1/a(n) = zeta(2)/zeta(4) = 15/Pi^2 (A082020). - Amiram Eldar, May 22 2020 MATHEMATICA Select[Range, SquareFreeQ]^2 PROG (PARI) je=[]; for(n=1, 200, if(issquarefree(n), je=concat(je, n^2), )); je (PARI) n=0; for (m=1, 10^5, if(issquarefree(m), write("b062503.txt", n++, " ", m^2); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009 (PARI) is(n)=issquare(n, &n) && issquarefree(n) \\ Charles R Greathouse IV, Sep 18 2015 (Haskell) a062503 = a000290 . a005117  -- Reinhard Zumkeller, Jul 07 2013 CROSSREFS Characteristic function is A227291. Other powers of squarefree numbers: A005117(1), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7), A072774(all). Cf. A000290, A062320. Cf. A001248 (a subsequence). A329332 column 2 in ascending order. Sequence in context: A325240 A153158 A111245 * A248648 A063577 A087058 Adjacent sequences:  A062500 A062501 A062502 * A062504 A062505 A062506 KEYWORD nonn AUTHOR Jason Earls, Jul 09 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 00:55 EDT 2021. Contains 345329 sequences. (Running on oeis4.)