Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 15 2024 08:02:08
%S 1,1,7,97,2035,57445,2042215,87651865,4410770875,254705483725,
%T 16603869256975,1206175463317825,96627476254984675,
%U 8463175473211383925,804573717383525464375,82513390092813146091625,9080444173122231239204875,1067360792025339122846660125,133468583774114314367364097375
%N E.g.f. A(x) satisfies: A'(x) = 1 + A(x)*A'(x)^3.
%H Paul D. Hanna, <a href="/A376175/b376175.txt">Table of n, a(n) for n = 1..300</a>
%F E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! satisfies:
%F (1) A(x) = Series_Reversion( Integral( dx/D(x) ) ) where D(x) = 1 + x*D(x)^3 is the g.f. of A001764.
%F (2) A'(x) = Sum_{n>=0} A001764(n)*A(x)^n where A001764(n) = binomial(3*n,n)/(2*n+1).
%F (3) A'(x) = 1 + A(x)*A'(x)^3.
%F (4) A'(x) = 1/(1 - A(x)*A'(x)^2).
%F (5) A(x) = x + Sum_{n>=0} d^n/dx^n G(x)^(n+1)/(n+1)!, where G(x) = Integral( x*D(x)^2 dx ) and D(x) = 1 + x*D(x)^3.
%F (6) A(x - B(x)) = x where B(x) = Sum_{n>=0} binomial(3*n+1,n) * x^(n+2) / ((n+1)*(n+2)).
%F a(n) ~ 2^(2*n - 6) * 3^(4*n - 7/2) * n^(n-2) / (exp(n) * 43^(n - 3/2)). - _Vaclav Kotesovec_, Sep 14 2024
%e E.g.f.: A(x) = x + x^2/2! + 7*x^3/3! + 97*x^4/4! + 2035*x^5/5! + 57445*x^6/6! + 2042215*x^7/7! + 87651865*x^8/8! + 4410770875*x^9/9! + ...
%e where A'(x) = 1 + A(x)*A'(x)^3.
%e Also,
%e A'(x) = 1 + A(x) + 3*A(x)^2 + 12*A(x)^3 + 55*A(x)^4 + 273*A(x)^5 + 1428*A(x)^6 + 7752*A(x)^7 + ... + A001764(n)*A(x)^n + ...
%e RELATED SERIES.
%e Series D(x) = 1 + x*D(x)^3 begins
%e D(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + ... + A001764(n)*x^n + ...
%e where Integral( dx/D(x) ) = x - x^2/2! - 4*x^3/3! - 42*x^4/4! - 720*x^5/5! - 17160*x^6/6! - 524160*x^7/7! - 19535040*x^8/8! + ...
%e and A(x) = Series_Reversion( Integral( dx/D(x) ) ).
%e A'(x)^3 = 1 + 3*x + 27*x^2/2! + 423*x^3/3! + 9567*x^4/4! + 284355*x^5/5! + 10499715*x^6/6! + 464006655*x^7/7! + ...
%o (PARI) /* A'(x) = 1 + A(x)*A'(x)^3 */
%o {a(n) = my(A=x); for(i=1, n, A = intformal(1 + A*(A')^3 + x*O(x^n))); n!*polcoeff(A, n)}
%o for(n=1, 20, print1(a(n), ", "))
%o (PARI) /* A(x) = Series_Reversion( Integral( dx/D ) ) where D = 1 + x*D^3 */
%o {a(n) = my(D = ((1/x)*serreverse(x/(1 + x + x*O(x^n))^3))^(1/3), A); A = serreverse(intformal(1/D)); n!*polcoeff(A, n)}
%o for(n=1, 20, print1(a(n), ", "))
%Y Cf. A180254, A376174, A001764.
%K nonn
%O 1,3
%A _Paul D. Hanna_, Sep 13 2024