login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361093
E.g.f. satisfies A(x) = exp( 1/(1 - x * A(x)^2) - 1 ).
10
1, 1, 7, 97, 2049, 58541, 2114143, 92419965, 4746108769, 280105517881, 18683156508471, 1389960074426969, 114119472522112225, 10249863809271551973, 999746622121255094479, 105236583967331849218741, 11891012005206169120252737, 1435560112909007680593616625
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} (2*n+1)^(k-1) * binomial(n-1,n-k)/k!.
a(n) ~ n^(n-1) / (2 * 3^(1/4) * (2 - sqrt(3))^n * exp((2 - sqrt(3))*n - (sqrt(3) - 1)/2)). - Vaclav Kotesovec, Mar 02 2023
MATHEMATICA
Table[n! * Sum[(2*n+1)^(k-1) * Binomial[n-1, n-k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 02 2023 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, (2*n+1)^(k-1)*binomial(n-1, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 01 2023
STATUS
approved