|
|
A361093
|
|
E.g.f. satisfies A(x) = exp( 1/(1 - x * A(x)^2) - 1 ).
|
|
9
|
|
|
1, 1, 7, 97, 2049, 58541, 2114143, 92419965, 4746108769, 280105517881, 18683156508471, 1389960074426969, 114119472522112225, 10249863809271551973, 999746622121255094479, 105236583967331849218741, 11891012005206169120252737, 1435560112909007680593616625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = n! * Sum_{k=0..n} (2*n+1)^(k-1) * binomial(n-1,n-k)/k!.
a(n) ~ n^(n-1) / (2 * 3^(1/4) * (2 - sqrt(3))^n * exp((2 - sqrt(3))*n - (sqrt(3) - 1)/2)). - Vaclav Kotesovec, Mar 02 2023
|
|
MATHEMATICA
|
Table[n! * Sum[(2*n+1)^(k-1) * Binomial[n-1, n-k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 02 2023 *)
|
|
PROG
|
(PARI) a(n) = n!*sum(k=0, n, (2*n+1)^(k-1)*binomial(n-1, n-k)/k!);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|