login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006206 Number of aperiodic binary necklaces of length n with no subsequence 00, excluding the necklace "0".
(Formerly M0317)
25
1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Bau-Sen Du (1985/1989)'s Table 1 has this sequence, denoted A_{n,1}, as the second column. - Jonathan Vos Post, Jun 18 2007

REFERENCES

Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

James Spahlinger, Table of n, a(n) for n = 1..5000

Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.

Joerg Arndt, Matters Computational (The Fxtbook), p. 710.

Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See 2nd line of Table 1 (p. 6).

Michael Baake, Joachim Hermisson, and Peter Pleasants, The torus parametrization of quasiperiodic LI-classes, J. Phys. A 30(9) (1997), 3029-3056.

Latham Boyle and Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv:1608.08220 [math-ph], 2016.

D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.

D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, arXiv:hep-th/9609128, 1996.

D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett B., 393 (1997), 403-412.

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. 3 (2000), #00.1.5.

M. Conder, S. Du, R. Nedela, and M. Skoviera, Regular maps with nilpotent automorphism group, Journal of Algebraic Combinatorics, 44(4) (2016), 863-874. ["... We note that the sequence h_n above agrees in all but the first term with the sequence A006206 in ..."]

Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem, Bull. Austral. Math. Soc. 31 (1985), 89-103. Corrigendum: 32 (1985), 159.

Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem, arXiv:0706.2297 [math.DS], 2007.

Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, Fib. Quart. 27 (1989), 116-124.

Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, arXiv:0706.2421 [math.NT], 2007.

Larry Ericksen, Primality Testing and Prime Constellations, Šiauliai Mathematical Seminar, 3(11), 2008; mentions this sequence.

R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arXiv:0903.2514 [math.NT], 2009-2011; sequence gamma_{1,j}^(A).

A. Pakapongpun and T. Ward, Functorial Orbit counting, J. Integer Seqs. 12 (2009), #09.2.4; example 21.

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs. 4 (2001), #01.2.1.

Index entries for sequences related to Lyndon words

FORMULA

Euler transform is Fibonacci(n+1): 1/((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)^2 * (1 - x^6)^2 * ...) = 1/(Product_{n >= 1} (1 - x^n)^a(n)) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + ...

Coefficients of power series of natural logarithm of the infinite product Product_{n>=1} (1 - x^n - x^(2*n))^(-mu(n)/n), where mu(n) is the Moebius function. This is related to Fibonacci sequence since 1/(1 - x^n - x^(2*n)) expands to a power series whose terms are Fibonacci numbers.

a(n) = (1/n) * Sum_{d|n} mu(n/d) * (Fibonacci(d-1) + Fibonacci(d+1)) = (1/n) * Sum_{d|n} mu(n/d) * Lucas(d). Hence Lucas(n) = Sum_{d|n} d*a(d).

a(n) = round((1/n) * Sum_{d|n} mu(n)*phi^(n/d))). - David Broadhurst

G.f.: Sum_{n >= 1} -mu(n) * log(1 - x^n - x^(2*n))/n.

a(n) = (1/n) * Sum_{d|n} mu(d) * A001610(n/d - 1), n > 1. - R. J. Mathar, Mar 07 2009

For n > 2, a(n) = A060280(n) = A031367(n)/n.

EXAMPLE

Necklaces are: 1, 10, 110, 1110; 11110, 11010, 111110, 111010, ...

MAPLE

A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) end do; sum/n; end proc:

MATHEMATICA

a[n_] := Total[(MoebiusMu[n/#]*(Fibonacci[#+1] + Fibonacci[#-1]) & ) /@ Divisors[n]]/n;

(* or *) a[n_] := Sum[LucasL[k]*MoebiusMu[n/k], {k, Divisors[n]}]/n; Table[a[n], {n, 100}] (* Jean-François Alcover, Jul 19 2011, after given formulas *)

PROG

(PARI) a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1)))/n)

(Haskell)

a006206 n = sum (map f $ a027750_row n) `div` n where

   f d = a008683 (n `div` d) * (a000045 (d - 1) + a000045 (d + 1))

-- Reinhard Zumkeller, Jun 01 2013

(Sage)

z = PowerSeriesRing(ZZ, 'z').gen().O(30)

r = (1 - (z + z**2))

F = -z*r.derivative()/r

[sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020

CROSSREFS

Cf. A006207 (A_{n,2}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.

Cf. A001461 (partial sums), A000045, A008683, A027750.

Cf. A125951 and A113788 for similar sequences.

Sequence in context: A013979 A107458 A274142 * A060280 A095719 A153952

Adjacent sequences:  A006203 A006204 A006205 * A006207 A006208 A006209

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane and Frank Ruskey

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 13:59 EST 2021. Contains 341949 sequences. (Running on oeis4.)