login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006207 Generalized Fibonacci numbers A_{n,2}.
(Formerly M0286)
6
1, 1, 0, 1, 1, 2, 2, 3, 4, 6, 8, 11, 16, 23, 32, 46, 66, 94, 136, 195, 282, 408, 592, 856, 1248, 1814, 2646, 3858, 5644, 8246, 12088, 17706, 25992, 38155, 56102, 82490, 121474, 178902, 263776, 389033, 574304, 848069, 1253344, 1852926, 2741164 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Bau-Sen Du (1985)'s Table 1, p. 6, has this sequence as the third column. - Jonathan Vos Post, Jun 18 2007

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..45.

Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem. Bull. Austral. Math. Soc. 31(1985), 89-103. Corrigendum: 32 (1985), 159.

Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, Fib. Quart., 27 (1989), 116-124.

MATHEMATICA

max = 100; Clear[b1, b2]; For[n=1, n <= max, n++, For[j=1, j <= n, j++, b1[1][j, n] = 0; b1[2][j, n] = 1; b2[1][j, n] = b2[2][j, n] = 0]; b2[1][n, n] = b2[2][n, n] = 1]; For[k=3, k <= max, k++, For[n=1, n <= max, n++, For[j=1, j <= n-1, j++, b1[k][j, n] = b1[k-2][1, n] + b1[k - 2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]; ]; b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k - 1][n, n]]];

phin[n_] := Table[b2[m][n, n] + 2*Sum[If[m + 2 - 2*j > 0, b1[m + 2 - 2*j][j, n], 0], {j, 1, n}], {m, 1, max}];

MT[s_List] := Table[ DivisorSum[n, MoebiusMu[#]*s[[n/#]]&]/n, {n, 1, Length[s]}];

MT[phin[2]] (* Jean-Fran├žois Alcover, Dec 07 2015, adapted from Max Alekseyev's PARI script *)

PROG

(PARI)

b1 = vector(100, k, matrix(100, 100)); b2 = vector(100, k, matrix(100, 100)); for(n=1, 100, for(j=1, n, b1[1][j, n]=0; b1[2][j, n]=1; b2[1][j, n] = b2[2][j, n] = 0); b2[1][n, n] = b2[2][n, n] = 1); for(k=3, 100, for(n=1, 100, for(j=1, n-1, b1[k][j, n] = b1[k-2][1, n] + b1[k-2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]; ); b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k-1][n, n]; )); \\ Computing arrays b(k, 1, j, n) and b(k, 2, j, n)

{ phin(n) = vector(100, m, b2[m][n, n] + 2*sum(j=1, n, if(m+2-2*j>0, b1[m+2-2*j][j, n]))) } \\ sequence phi_n

{ MT(s) = vector(#s, n, sumdiv(n, d, moebius(d)*s[n/d])/n) } \\ Moebius transform

MT( phin(2) ) \\ sequence A_{n, 2}

\\ Max Alekseyev, Feb 23 2012

CROSSREFS

Cf. A006206 (A_{n,1}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.

Sequence in context: A103632 A214076 A067859 * A318403 A332755 A017912

Adjacent sequences:  A006204 A006205 A006206 * A006208 A006209 A006210

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

arxiv URL replaced with non-cached version by R. J. Mathar, Oct 30 2009

Terms a(32) onward from Max Alekseyev, Feb 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)