login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006207
Generalized Fibonacci numbers A_{n,2}.
(Formerly M0286)
6
1, 1, 0, 1, 1, 2, 2, 3, 4, 6, 8, 11, 16, 23, 32, 46, 66, 94, 136, 195, 282, 408, 592, 856, 1248, 1814, 2646, 3858, 5644, 8246, 12088, 17706, 25992, 38155, 56102, 82490, 121474, 178902, 263776, 389033, 574304, 848069, 1253344, 1852926, 2741164
OFFSET
1,6
COMMENTS
Bau-Sen Du (1985)'s Table 1, p. 6, has this sequence as the third column. - Jonathan Vos Post, Jun 18 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem. Bull. Austral. Math. Soc. 31(1985), 89-103. Corrigendum: 32 (1985), 159.
Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, Fib. Quart., 27 (1989), 116-124.
MATHEMATICA
max = 100; Clear[b1, b2]; For[n=1, n <= max, n++, For[j=1, j <= n, j++, b1[1][j, n] = 0; b1[2][j, n] = 1; b2[1][j, n] = b2[2][j, n] = 0]; b2[1][n, n] = b2[2][n, n] = 1]; For[k=3, k <= max, k++, For[n=1, n <= max, n++, For[j=1, j <= n-1, j++, b1[k][j, n] = b1[k-2][1, n] + b1[k - 2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]; ]; b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k - 1][n, n]]];
phin[n_] := Table[b2[m][n, n] + 2*Sum[If[m + 2 - 2*j > 0, b1[m + 2 - 2*j][j, n], 0], {j, 1, n}], {m, 1, max}];
MT[s_List] := Table[ DivisorSum[n, MoebiusMu[#]*s[[n/#]]&]/n, {n, 1, Length[s]}];
MT[phin[2]] (* Jean-François Alcover, Dec 07 2015, adapted from Max Alekseyev's PARI script *)
PROG
(PARI)
b1 = vector(100, k, matrix(100, 100)); b2 = vector(100, k, matrix(100, 100)); for(n=1, 100, for(j=1, n, b1[1][j, n]=0; b1[2][j, n]=1; b2[1][j, n] = b2[2][j, n] = 0); b2[1][n, n] = b2[2][n, n] = 1); for(k=3, 100, for(n=1, 100, for(j=1, n-1, b1[k][j, n] = b1[k-2][1, n] + b1[k-2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]; ); b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k-1][n, n]; )); \\ Computing arrays b(k, 1, j, n) and b(k, 2, j, n)
{ phin(n) = vector(100, m, b2[m][n, n] + 2*sum(j=1, n, if(m+2-2*j>0, b1[m+2-2*j][j, n]))) } \\ sequence phi_n
{ MT(s) = vector(#s, n, sumdiv(n, d, moebius(d)*s[n/d])/n) } \\ Moebius transform
MT( phin(2) ) \\ sequence A_{n, 2}
\\ Max Alekseyev, Feb 23 2012
CROSSREFS
Cf. A006206 (A_{n,1}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392.
Sequence in context: A103632 A214076 A067859 * A318403 A362048 A334626
KEYWORD
nonn
EXTENSIONS
arxiv URL replaced with non-cached version by R. J. Mathar, Oct 30 2009
Terms a(32) onward from Max Alekseyev, Feb 23 2012
STATUS
approved