The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006207 Generalized Fibonacci numbers A_{n,2}. (Formerly M0286) 6
 1, 1, 0, 1, 1, 2, 2, 3, 4, 6, 8, 11, 16, 23, 32, 46, 66, 94, 136, 195, 282, 408, 592, 856, 1248, 1814, 2646, 3858, 5644, 8246, 12088, 17706, 25992, 38155, 56102, 82490, 121474, 178902, 263776, 389033, 574304, 848069, 1253344, 1852926, 2741164 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Bau-Sen Du (1985)'s Table 1, p. 6, has this sequence as the third column. - Jonathan Vos Post, Jun 18 2007 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem. Bull. Austral. Math. Soc. 31(1985), 89-103. Corrigendum: 32 (1985), 159. Bau-Sen Du, A Simple Method Which Generates Infinitely Many Congruence Identities, Fib. Quart., 27 (1989), 116-124. MATHEMATICA max = 100; Clear[b1, b2]; For[n=1, n <= max, n++, For[j=1, j <= n, j++, b1[1][j, n] = 0; b1[2][j, n] = 1; b2[1][j, n] = b2[2][j, n] = 0]; b2[1][n, n] = b2[2][n, n] = 1]; For[k=3, k <= max, k++, For[n=1, n <= max, n++, For[j=1, j <= n-1, j++, b1[k][j, n] = b1[k-2][1, n] + b1[k - 2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]; ]; b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k - 1][n, n]]]; phin[n_] := Table[b2[m][n, n] + 2*Sum[If[m + 2 - 2*j > 0, b1[m + 2 - 2*j][j, n], 0], {j, 1, n}], {m, 1, max}]; MT[s_List] := Table[ DivisorSum[n, MoebiusMu[#]*s[[n/#]]&]/n, {n, 1, Length[s]}]; MT[phin[2]] (* Jean-François Alcover, Dec 07 2015, adapted from Max Alekseyev's PARI script *) PROG (PARI) b1 = vector(100, k, matrix(100, 100)); b2 = vector(100, k, matrix(100, 100)); for(n=1, 100, for(j=1, n, b1[1][j, n]=0; b1[2][j, n]=1; b2[1][j, n] = b2[2][j, n] = 0); b2[1][n, n] = b2[2][n, n] = 1); for(k=3, 100, for(n=1, 100, for(j=1, n-1, b1[k][j, n] = b1[k-2][1, n] + b1[k-2][j+1, n]; b2[k][j, n] = b2[k-2][1, n] + b2[k-2][j+1, n]; ); b1[k][n, n] = b1[k-2][1, n] + b1[k-1][n, n]; b2[k][n, n] = b2[k-2][1, n] + b2[k-1][n, n]; )); \\ Computing arrays b(k, 1, j, n) and b(k, 2, j, n) { phin(n) = vector(100, m, b2[m][n, n] + 2*sum(j=1, n, if(m+2-2*j>0, b1[m+2-2*j][j, n]))) } \\ sequence phi_n { MT(s) = vector(#s, n, sumdiv(n, d, moebius(d)*s[n/d])/n) } \\ Moebius transform MT( phin(2) ) \\ sequence A_{n, 2} \\ Max Alekseyev, Feb 23 2012 CROSSREFS Cf. A006206 (A_{n,1}), A006208 (A_{n,3}), A006209 (A_{n,4}), A130628 (A_{n,5}), A208092 (A_{n,6}), A006210 (D_{n,2}), A006211 (D_{n,3}), A094392. Sequence in context: A103632 A214076 A067859 * A318403 A332755 A017912 Adjacent sequences:  A006204 A006205 A006206 * A006208 A006209 A006210 KEYWORD nonn AUTHOR EXTENSIONS arxiv URL replaced with non-cached version by R. J. Mathar, Oct 30 2009 Terms a(32) onward from Max Alekseyev, Feb 23 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 20:42 EDT 2020. Contains 334710 sequences. (Running on oeis4.)