OFFSET
1,11
COMMENTS
n * a(n) is the Möbius transform of the Perrin sequence A001608.
Number of unlabeled (i.e., defined up to a rotation) maximal independent sets of the n-cycle graph having n isomorphic representatives. - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007
LINKS
Danny Rorabaugh, Table of n, a(n) for n = 1..8000
Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See 1st line of Table 1 (p. 6).
R. Bisdorff and J.-L. Marichal, Counting non-isomorphic maximal independent sets of the n-cycle graph, arXiv:0701647 [math.CO], 2007-2008.
R. Bisdorff and J.-L. Marichal, Counting non-isomorphic maximal independent sets of the n-cycle graph, JIS 11 (2008), #08.5.7.
D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, UTAS-PHYS-96-44; arXiv:hep-th/9609128, 1996.
D. J. Broadhurst and D. Kreimer, Associated multiple zeta values with positive knots via Feynman diagrams up to 9 knots, Phys. Lett B, 393 (1997), 403-412.
M. Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
FORMULA
a(n) = (1/n) * Sum_{d|n} mu(n/d)*Perrin(d), where Perrin(d) = A001608 starting with 0, 2, 3, ... .
a(n) = Sum_{d|n} mu(n/d)*A127687(d) = (1/n) * Sum_{d|n} mu(n/d)*A001608(d). - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007
For p an odd prime, a(p) = Sum_{i=0..floor((p-3)/6)} (A(i)+B(i)-1)!/(A(i)!*B(i)!), where A(i) = (p-3)/2 - 3*i, and B(i) = 1 + 2*i. - Richard Turk, Sep 08 2015
a(n) ~ A060006^n / n. - Vaclav Kotesovec, Oct 09 2019
MAPLE
A113788 := proc(n::integer)
local resul, d;
resul :=0;
for d from 1 to n do
if n mod d = 0 then
resul := resul +numtheory[mobius](n/d)*A001608(d);
fi;
od:
RETURN(resul/n);
end: # R. J. Mathar, Apr 25 2006
MATHEMATICA
(* p = A001608 *) p[n_] := p[n] = p[n-2] + p[n-3]; p[0] = 3; p[1] = 0; p[2] = 2; a[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
PROG
(Sage)
z = PowerSeriesRing(ZZ, 'z').gen().O(30)
r = (1 - (z**2 + z**3))
F = -z*r.derivative()/r
[sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 27 2006
STATUS
approved