login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113788
Number of irreducible multiple zeta values at weight n.
8
0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, 28, 34, 45, 56, 73, 92, 120, 151, 197, 250, 324, 414, 537, 687, 892, 1145, 1484, 1911, 2479, 3196, 4148, 5359, 6954, 9000, 11687, 15140, 19672, 25516, 33166, 43065, 56010, 72784, 94716, 123185
OFFSET
1,11
COMMENTS
n * a(n) is the Möbius transform of the Perrin sequence A001608.
Number of unlabeled (i.e., defined up to a rotation) maximal independent sets of the n-cycle graph having n isomorphic representatives. - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007
LINKS
Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See 1st line of Table 1 (p. 6).
R. Bisdorff and J.-L. Marichal, Counting non-isomorphic maximal independent sets of the n-cycle graph, arXiv:0701647 [math.CO], 2007-2008.
R. Bisdorff and J.-L. Marichal, Counting non-isomorphic maximal independent sets of the n-cycle graph, JIS 11 (2008), #08.5.7.
D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, UTAS-PHYS-96-44; arXiv:hep-th/9609128, 1996.
D. J. Broadhurst and D. Kreimer, Associated multiple zeta values with positive knots via Feynman diagrams up to 9 knots, Phys. Lett B, 393 (1997), 403-412.
M. Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
FORMULA
a(n) = (1/n) * Sum_{d|n} mu(n/d)*Perrin(d), where Perrin(d) = A001608 starting with 0, 2, 3, ... .
a(n) = Sum_{d|n} mu(n/d)*A127687(d) = (1/n) * Sum_{d|n} mu(n/d)*A001608(d). - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007
For p an odd prime, a(p) = Sum_{i=0..floor((p-3)/6)} (A(i)+B(i)-1)!/(A(i)!*B(i)!), where A(i) = (p-3)/2 - 3*i, and B(i) = 1 + 2*i. - Richard Turk, Sep 08 2015
a(n) ~ A060006^n / n. - Vaclav Kotesovec, Oct 09 2019
MAPLE
A113788 := proc(n::integer)
local resul, d;
resul :=0;
for d from 1 to n do
if n mod d = 0 then
resul := resul +numtheory[mobius](n/d)*A001608(d);
fi;
od:
RETURN(resul/n);
end: # R. J. Mathar, Apr 25 2006
MATHEMATICA
(* p = A001608 *) p[n_] := p[n] = p[n-2] + p[n-3]; p[0] = 3; p[1] = 0; p[2] = 2; a[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
PROG
(Sage)
z = PowerSeriesRing(ZZ, 'z').gen().O(30)
r = (1 - (z**2 + z**3))
F = -z*r.derivative()/r
[sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 27 2006
STATUS
approved