The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052160 Isolated prime difference equals 6: primes prime(k) such that d(k) = prime(k+1) - prime(k) = 6 but neither d(k+1) nor d(k-1) is 6. 9
 23, 31, 61, 73, 83, 131, 233, 271, 331, 353, 383, 433, 443, 503, 541, 571, 677, 751, 991, 1013, 1033, 1063, 1231, 1283, 1291, 1321, 1433, 1453, 1493, 1543, 1553, 1601, 1613, 1621, 1657, 1777, 1861, 1973, 1987, 2011, 2063, 2131, 2207, 2333, 2341, 2351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Consecutive primes 17, 19, 23, 29, 31 give the pattern of first differences 2, 4, 6, 2 in which the neighboring differences of 6 are not equal to 6. a(n) - 6 can be prime but not the prime immediately previous to a(n); e.g., 23 - 6 = 17, but the prime 19 lies between the two primes 17 and 23. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE N:= 3000: # to get all terms <= N Primes:= select(isprime, [seq(i, i=3..N, 2)]): d:= Primes[2..-1]-Primes[1..-2]: R:= select(t -> d[t] = 6 and d[t+1] <> 6 and d[t-1] <> 6, [\$2..nops(d)-1]): Primes[R]; # Robert Israel, May 29 2018 PROG (PARI) lista(nn) = {vp = primes(nn); vd = vector(#vp-1, k, vp[k+1] - vp[k]); for (i=2, #vd, if ((vd[i] == 6) && (vd[i-1] !=6) && (vd[i+1] != 6), print1(vp[i], ", ")); ); } \\ Michel Marcus, May 29 2018 CROSSREFS Cf. A001223, A033451, A047948. Sequence in context: A330162 A006203 A153635 * A165985 A093014 A165450 Adjacent sequences: A052157 A052158 A052159 * A052161 A052162 A052163 KEYWORD nonn AUTHOR Labos Elemer, Jan 25 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 10:17 EDT 2024. Contains 371852 sequences. (Running on oeis4.)