login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052160
Isolated prime difference equals 6: primes prime(k) such that d(k) = prime(k+1) - prime(k) = 6 but neither d(k+1) nor d(k-1) is 6.
9
23, 31, 61, 73, 83, 131, 233, 271, 331, 353, 383, 433, 443, 503, 541, 571, 677, 751, 991, 1013, 1033, 1063, 1231, 1283, 1291, 1321, 1433, 1453, 1493, 1543, 1553, 1601, 1613, 1621, 1657, 1777, 1861, 1973, 1987, 2011, 2063, 2131, 2207, 2333, 2341, 2351
OFFSET
1,1
COMMENTS
Consecutive primes 17, 19, 23, 29, 31 give the pattern of first differences 2, 4, 6, 2 in which the neighboring differences of 6 are not equal to 6.
a(n) - 6 can be prime but not the prime immediately previous to a(n); e.g., 23 - 6 = 17, but the prime 19 lies between the two primes 17 and 23.
LINKS
MAPLE
N:= 3000: # to get all terms <= N
Primes:= select(isprime, [seq(i, i=3..N, 2)]):
d:= Primes[2..-1]-Primes[1..-2]:
R:= select(t -> d[t] = 6 and d[t+1] <> 6 and d[t-1] <> 6, [$2..nops(d)-1]):
Primes[R]; # Robert Israel, May 29 2018
PROG
(PARI) lista(nn) = {vp = primes(nn); vd = vector(#vp-1, k, vp[k+1] - vp[k]); for (i=2, #vd, if ((vd[i] == 6) && (vd[i-1] !=6) && (vd[i+1] != 6), print1(vp[i], ", ")); ); } \\ Michel Marcus, May 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 25 2000
STATUS
approved