login
A351677
Discriminants of imaginary quadratic fields with class number 39 (negated).
1
1439, 2207, 2791, 3767, 3919, 4111, 5099, 5119, 6199, 6779, 9059, 9967, 10091, 10163, 10399, 10567, 10667, 11743, 12539, 13163, 13523, 14843, 14867, 15607, 16087, 16139, 16787, 17383, 18127, 21851, 23027, 24499, 26539, 27827, 30211, 30347, 30803, 32027, 32491
OFFSET
1,1
COMMENTS
Sequence contains 115 terms; largest is 253507.
The class group of Q[sqrt(-d)] is isomorphic to C_39 for all d in this sequence.
LINKS
Mark Watkins, Class numbers of imaginary quadratic fields, Mathematics of Computation, 73, pp. 907-938.
Eric Weisstein's World of Mathematics, Class Number
PROG
(Sage)
ls = [(QuadraticField(-n, 'a').discriminant(), QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)];
[-a[0] for a in ls if a[1] == 39]
KEYWORD
nonn,fini,full
AUTHOR
Andy Huchala, Mar 27 2022
STATUS
approved