login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081426
Class 7- primes.
13
1439, 8629, 10067, 14683, 17257, 19577, 20389, 22643, 23743, 27103, 28219, 29399, 31657, 32633, 33107, 33113, 33863, 34259, 34513, 35951, 36137, 36887, 37379, 40127, 40637, 40759, 42179, 42209, 42767, 44519, 44579, 45139, 49019, 49669
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, A18.
LINKS
MATHEMATICA
PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[5200], ClassMinusNbr[ Prime[ # ]] == 7 &]]
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Mar 20 2003
STATUS
approved