login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114046 Numbers x such that x^2 - 92*y^2 = 1. 1
1, 1151, 2649601, 6099380351, 14040770918401, 32321848554778751, 74404881332329766401, 171280004505174567476351, 394286495966030522000793601, 907647342433797756471259393151, 2089403787996106469366317122240001, 4809806612319694658683505544137089151 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Quote from the link prompting this sequence. A person who can, within a year, solve x^2 - 92y^2 = 1 is a mathematician. Brahmagupta [598-668] This sequence is computed with g(1e9,92) in the pari program.

A Pell equation - Benoit Cloitre, Feb 03 2006

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..297

Author?, Title?

Tanya Khovanova, Recursive Sequences

John Robertson, Home page.

Index entries for linear recurrences with constant coefficients, signature (2302, -1).

FORMULA

a(0)=1, a(1)=1151 then a(n)=2302*a(n-1)-a(n-2) - Benoit Cloitre, Feb 03 2006

G.f.: (1-1151x)/(1-2302x+x^2). [From Philippe Deléham, Nov 18 2008]

a(n)=1/2*{[1151-240*sqrt(23)]^n+[1151+240*sqrt(23)]^n}, with n>=0 [From Paolo P. Lava, Nov 24 2008]

EXAMPLE

(1151^2 - 1)/92 = 120^2.

MATHEMATICA

LinearRecurrence[{2302, -1}, {1, 1151}, 12] (* Ray Chandler, Aug 11 2015 *)

PROG

(PARI) g(n, k) = for(y=0, n, x=k*y^2+1; if(issquare(x), print1(floor(sqrt(x))", ")))

(PARI) a0=1; a1=1151; for(n=2, 30, a2=2302*a1-a0; a0=a1; a1=a2; print1(a2, ", ")) (Cloitre)

CROSSREFS

Sequence in context: A179037 A098976 A154374 * A035888 A252438 A179689

Adjacent sequences:  A114043 A114044 A114045 * A114047 A114048 A114049

KEYWORD

easy,nonn

AUTHOR

Cino Hilliard, Feb 01 2006

EXTENSIONS

More terms from Benoit Cloitre, Feb 03 2006

a(11) and a(12) from Harvey P. Dale, Oct 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 23:39 EDT 2017. Contains 290940 sequences.