login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154375
a(n) = 1250*n^2 + 100*n + 1.
3
1351, 5201, 11551, 20401, 31751, 45601, 61951, 80801, 102151, 126001, 152351, 181201, 212551, 246401, 282751, 321601, 362951, 406801, 453151, 502001, 553351, 607201, 663551, 722401, 783751, 847601, 913951, 982801, 1054151, 1128001
OFFSET
1,1
COMMENTS
The identity (1250*n^2 + 100*n + 1)^2 - (25*n^2 + 2*n)*(250*n + 10)^2 = 1 can be written as a(n)^2 - A154377(n)*A154379(n)^2 = 1. - Vincenzo Librandi, Jan 30 2012
This is the case s=5 of the identity (2*s^4*n^2 + 4*s^2*n + 1)^2 - (s^2*n^2 + 2*n)*(2*s^3*n + 2*s)^2 = 1. - Bruno Berselli, Jan 30 2012
FORMULA
a(1)=1351, a(2)=5201, a(3)=11551, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Apr 25 2011
G.f.: x*(x^2 + 1148*x + 1351)/(1-x)^3. - Vincenzo Librandi, Jan 30 2012
E.g.f.: (1250*x^2 + 1350*x + 1)*exp(x) - 1. - G. C. Greubel, Sep 15 2016
MATHEMATICA
Table[1250n^2+100n+1, {n, 30}] (* or *) LinearRecurrence[{3, -3, 1}, {1351, 5201, 11551}, 30] (* Harvey P. Dale, Apr 25 2011 *)
PROG
(PARI) a(n)=1250*n^2+100*n+1 \\ Charles R Greathouse IV, Dec 27 2011
CROSSREFS
Sequence in context: A307218 A278383 A174638 * A243132 A349070 A035889
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 08 2009
EXTENSIONS
Minor corrections by M. F. Hasler, Oct 08 2014
STATUS
approved