login
A244632
a(n) = 23*n^2.
5
0, 23, 92, 207, 368, 575, 828, 1127, 1472, 1863, 2300, 2783, 3312, 3887, 4508, 5175, 5888, 6647, 7452, 8303, 9200, 10143, 11132, 12167, 13248, 14375, 15548, 16767, 18032, 19343, 20700, 22103, 23552, 25047, 26588, 28175, 29808, 31487, 33212, 34983, 36800, 38663
OFFSET
0,2
COMMENTS
First bisection of A195058. - Bruno Berselli, Jul 03 2014
FORMULA
G.f.: 23*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 23*A000290(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 23*x*(1 + x)*exp(x).
a(n) = n*A008605(n) = A195058(2*n). (End)
MATHEMATICA
Table[23 n^2, {n, 0, 40}]
LinearRecurrence[{3, -3, 1}, {0, 23, 92}, 50] (* Harvey P. Dale, Jul 14 2024 *)
PROG
(Magma) [23*n^2: n in [0..40]];
(PARI) a(n)=23*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. similar sequences listed in A244630.
Sequence in context: A215613 A306138 A317371 * A042030 A042032 A257976
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 03 2014
STATUS
approved