login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244632
a(n) = 23*n^2.
5
0, 23, 92, 207, 368, 575, 828, 1127, 1472, 1863, 2300, 2783, 3312, 3887, 4508, 5175, 5888, 6647, 7452, 8303, 9200, 10143, 11132, 12167, 13248, 14375, 15548, 16767, 18032, 19343, 20700, 22103, 23552, 25047, 26588, 28175, 29808, 31487, 33212, 34983, 36800, 38663
OFFSET
0,2
COMMENTS
First bisection of A195058. - Bruno Berselli, Jul 03 2014
FORMULA
G.f.: 23*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 23*A000290(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 23*x*(1 + x)*exp(x).
a(n) = n*A008605(n) = A195058(2*n). (End)
MATHEMATICA
Table[23 n^2, {n, 0, 40}]
LinearRecurrence[{3, -3, 1}, {0, 23, 92}, 50] (* Harvey P. Dale, Jul 14 2024 *)
PROG
(Magma) [23*n^2: n in [0..40]];
(PARI) a(n)=23*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. similar sequences listed in A244630.
Sequence in context: A215613 A306138 A317371 * A042030 A042032 A257976
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 03 2014
STATUS
approved