login
A195058
Concentric 23-gonal numbers.
7
0, 1, 23, 47, 92, 139, 207, 277, 368, 461, 575, 691, 828, 967, 1127, 1289, 1472, 1657, 1863, 2071, 2300, 2531, 2783, 3037, 3312, 3589, 3887, 4187, 4508, 4831, 5175, 5521, 5888, 6257, 6647, 7039, 7452, 7867, 8303, 8741, 9200, 9661, 10143, 10627
OFFSET
0,3
FORMULA
a(n) = 23*n^2/4 + 19*((-1)^n-1)/8.
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1 + 21*x + x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/138 + tan(sqrt(19/23)*Pi/2)*Pi/sqrt(437). - Amiram Eldar, Jan 17 2023
MATHEMATICA
Table[23n^2/4 + 19((-1)^n - 1)/8, {n, 0, 49}] (* Alonso del Arte, Jan 23 2015 *)
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 23, 47}, 50] (* Harvey P. Dale, Jul 22 2023 *)
PROG
(PARI) a(n)=23*n^2/4+19*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Column 23 of A195040.
Sequence in context: A090191 A281022 A054821 * A352291 A039374 A043197
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 28 2011
STATUS
approved