login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195158
Concentric 24-gonal numbers.
6
0, 1, 24, 49, 96, 145, 216, 289, 384, 481, 600, 721, 864, 1009, 1176, 1345, 1536, 1729, 1944, 2161, 2400, 2641, 2904, 3169, 3456, 3745, 4056, 4369, 4704, 5041, 5400, 5761, 6144, 6529, 6936, 7345, 7776, 8209, 8664, 9121, 9600, 10081, 10584, 11089
OFFSET
0,3
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 24, ..., and the same line from 1, in the direction 1, 49, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. Main axis, perpendicular to A049598 in the same spiral.
FORMULA
a(n) = 6*n^2 + 5*((-1)^n-1)/2.
a(n) = -a(n-1) + A069190(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+22*x+x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/144 + tan(sqrt(5/6)*Pi/2)*Pi/(4*sqrt(30)). - Amiram Eldar, Jan 17 2023
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 24, 49}, 50] (* Harvey P. Dale, Jan 28 2021 *)
PROG
(Magma) [(12*n^2+5*(-1)^n-5)/2: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
(PARI) a(n)=6*n^2+5*((-1)^n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Column 24 of A195040.
Sequence in context: A044482 A045294 A258366 * A045279 A042142 A042144
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 28 2011
STATUS
approved