|
|
A195155
|
|
Number of divisors d of n such that d-1 also divides n or d-1 = 0.
|
|
3
|
|
|
1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
First differs from A055874 at a(20).
|
|
LINKS
|
|
|
FORMULA
|
a(2n-1) = 1; a(2n) = 1 + A007862(n).
|
|
MAPLE
|
with(numtheory):
a:= n-> add(`if`(d=1 or irem(n, d-1)=0, 1, 0), d=divisors(n)):
|
|
MATHEMATICA
|
d1[n_]:=Module[{d=Rest[Divisors[n]]}, Count[d, _?(Divisible[n, #-1]&)]+1]; Array[d1, 90] (* Harvey P. Dale, Oct 31 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|