The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007862 Number of triangular numbers that divide n. 54
 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 1, 5, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 4, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 2, 2, 1, 1, 5, 1, 1, 3, 1, 1, 4, 1, 1, 2, 2, 1, 4, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 5, 1, 1, 2, 1, 1, 6, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Also a(n) is the total number of ways to represent n+1 as a centered polygonal number of the form km(m+1)/2+1 for k>1. - Alexander Adamchuk, Apr 26 2007 a(A130317(n)) = n and a(m) <> n for m < A130317(n). - Reinhard Zumkeller, May 23 2007 Number of oblong numbers that divide 2n. - Ray Chandler, Jun 24 2008 The number of divisors d of 2n such that d+1 is also a divisor of 2n, see first formula. - Michel Marcus, Jun 18 2015 From Gus Wiseman, May 03 2019: (Start) Also the number of integer partitions of n forming a finite arithmetic progression with offset 0, i.e. the differences are all equal (with the last part taken to be 0). The Heinz numbers of these partitions are given by A325327. For example, the a(1) = 1 through a(12) = 3 partitions are (A = 10, B = 11, C = 12):   1    2    3     4    5    6      7    8    9     A       B     C             21              42               63    4321          84                             321                                  642 (End) LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Centered Polygonal Number. Wikipedia, Arithmetic progression. FORMULA a(n) = Sum_{d|2*n,d+1|2*n} 1. G.f.: Sum_{k>=1} x^A000217(k)/(1-x^A000217(k)). - Jon Perry, Jul 03 2004 a(n) = A129308(2n). - Ray Chandler, Jun 24 2008 a(n) = Sum_{k=1..A000005(n)} A010054(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014 MATHEMATICA sup=90; TriN=Array[ (#+1)(#+2)/2&, Floor[ N[ Sqrt[ sup*2 ] ] ]-1 ]; Array[ Function[n, 1+Count[ Map[ Mod[ n, # ]&, TriN ], 0 ] ], sup ] Table[Count[Divisors[k], _?(IntegerQ[Sqrt[8 # + 1]] &)], {k, 105}] (* Jayanta Basu, Aug 12 2013 *) Table[Length[Select[IntegerPartitions[n], SameQ@@Differences[Append[#, 0]]&]], {n, 0, 30}] (* Gus Wiseman, May 03 2019 *) PROG (Haskell) a007862 = sum . map a010054 . a027750_row -- Reinhard Zumkeller, Jul 05 2014 (PARI) a(n) = sumdiv(n, d, ispolygonal(d, 3)); \\ Michel Marcus, Jun 18 2015 CROSSREFS Cf. A046951. Cf. A010054, A027750, A000005, A239930. Cf. A000217, A007294, A049988, A325324, A325327, A325407. Sequence in context: A275699 A305633 A214123 * A285851 A055169 A205131 Adjacent sequences:  A007859 A007860 A007861 * A007863 A007864 A007865 KEYWORD nonn AUTHOR EXTENSIONS Extended by Ray Chandler, Jun 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 16:05 EDT 2021. Contains 342845 sequences. (Running on oeis4.)