The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239930 Number of distinct quarter-squares dividing n. 4
 1, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 2, 1, 5, 2, 2, 2, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 6, 2, 3, 1, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 2, 5, 1, 3, 1, 3, 1, 2, 1, 8, 1, 2, 2, 3, 1, 3, 1, 5, 3, 2, 1, 6, 1, 2, 1, 3, 1, 6, 1, 3, 1, 2, 1, 6, 1, 3, 2, 6, 1, 3, 1, 3, 1, 2, 1, 7, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For more information about the quarter-squares see A002620. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Wikipedia, Table of divisors FORMULA a(n) = Sum_{k=1..A000005(n)} A240025(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014 EXAMPLE For n = 12 the quarter-squares <= 12 are [0, 0, 1, 2, 4, 6, 9, 12]. There are five quarter-squares that divide 12; they are [1, 2, 4, 6, 12], so a(12) = 5. MAPLE isA002620 := proc(n)     local k, qsq ;     for k from 0 do         qsq := floor(k^2/4) ;         if n = qsq then             return true;         elif qsq > n then             return false;         end if;     end do: end proc: A239930 := proc(n)     local a, d ;     a :=0 ;     for d in numtheory[divisors](n) do         if isA002620(d) then             a:= a+1 ;         end if;     end do:     a; end proc: # R. J. Mathar, Jul 03 2014 MATHEMATICA qsQ[n_] := AnyTrue[Range[Ceiling[2 Sqrt[n]]], n == Floor[#^2/4]&]; a[n_] := DivisorSum[n, Boole[qsQ[#]]&]; Array[a, 110] (* Jean-François Alcover, Feb 12 2018 *) PROG (Haskell) a239930 = sum . map a240025 . a027750_row -- Reinhard Zumkeller, Jul 05 2014 CROSSREFS Cf. A000005, A001221, A001511, A002620, A005086, A006519, A007862, A027750, A046951, A147645, A236103. Cf. A240025. Sequence in context: A029242 A029236 A152188 * A226859 A025820 A109704 Adjacent sequences:  A239927 A239928 A239929 * A239931 A239932 A239933 KEYWORD nonn AUTHOR Omar E. Pol, Jun 19 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 16:05 EDT 2021. Contains 342845 sequences. (Running on oeis4.)