login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147645
Number of distinct Mersenne primes dividing n.
7
0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0
OFFSET
1,21
COMMENTS
a(n) = m first occurs at n = A098918(m). - Robert Israel, Feb 03 2020
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..131072 (terms 1..10000 from Robert Israel)
FORMULA
From Antti Karttunen, May 12 2022: (Start)
a(n) = A154402(n) - A353786(n)
a(n) = a(2*n) = a(A000265(n)).
a(n) <= A331410(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A173898 = 0.516454... . - Amiram Eldar, Dec 31 2023
EXAMPLE
a(21)=2 because 1, 3, 7 and 21 are divisors of 21. Then 21 has two divisors that are Mersenne primes (A000668): 3 and 7.
MAPLE
N:= 100: # for a(1)..a(N)
V:= Vector(N):
for i from 1 do
m:= numtheory:-mersenne([i]);
if m > N then break fi;
for j from m by m to N do
V[j]:= V[j]+1
od od:
convert(V, list); # Robert Israel, Feb 03 2020
PROG
(PARI) A147645(n) = { my(m=3, s=0); while(m<=n, s += (isprime(m)*!(n%m)); m += (m+1)); (s); }; \\ Antti Karttunen, May 12 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Nov 09 2008
STATUS
approved