login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A331410 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k + k/p, where p is the largest prime factor of k. 20
0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 3, 0, 3, 2, 3, 2, 2, 2, 2, 1, 4, 2, 3, 1, 4, 3, 1, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 2, 1, 2, 4, 4, 2, 4, 3, 4, 1, 4, 4, 4, 3, 2, 1, 3, 0, 4, 3, 4, 3, 3, 3, 3, 2, 5, 4, 5, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 5, 2, 5, 4, 3, 2, 2, 2, 5, 1, 3, 2, 4, 4, 5, 4, 3, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Let f(n) = A000265(n) be the odd part of n. Let p be the largest prime factor of k, and say k = p * m. Suppose that k is not a power of 2, i.e., p > 2, then f(k) = p * f(m). The iteration is k -> k + k/p = p*m + m = (p+1) * m. So, p * f(m) -> f(p+1) * f(m). Since for p > 2, f(p+1) < p, the odd part in each each iteration decreases, until it becomes 1, i.e., until we reach a power of 2. - Amiram Eldar, Feb 19 2020

Any odd prime factor of k can be used at any step of the iteration, and the result will be same. Thus, like A329697, this is also fully additive sequence. - Antti Karttunen, Apr 29 2020

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

FORMULA

From Antti Karttunen, Apr 29 2020: (Start)

This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.

a(2n) = a(A000265(n)) = a(n).

If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).

a(n) = A334097(n) - A334098(n).

a(A122111(n)) = A334108(n).

(End)

a(n) = A334861(n) - A329697(n). - Antti Karttunen, May 14 2020

EXAMPLE

The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.

MATHEMATICA

a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)

PROG

(MAGMA) f:=func<n|n+n div p where p is Max(PrimeDivisors(n))>; g:=func<n| n eq 1 or Max(PrimeDivisors(n)) eq 2>; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do  s:=s+1; k:=f(k); end while; Append(~a, s); end for; a; // Marius A. Burtea, Jan 19 2020

(PARI) A331410(n) = if(!bitand(n, n-1), 0, 1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020

(PARI) A331410(n) = { my(k=0); while(bitand(n, n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020

(PARI) A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(1+f[k, 1])))); }; \\ Antti Karttunen, Apr 30 2020

CROSSREFS

Cf. A000265, A006530 (greatest prime factor), A052126, A078701, A329662 (positions of records and the first occurrences of each n), A334097, A334098, A334108, A334861.

Cf. also A329697 (analogous sequence when using the map k -> k - k/p).

Sequence in context: A113974 A123331 A235141 * A114638 A123340 A267486

Adjacent sequences:  A331407 A331408 A331409 * A331411 A331412 A331413

KEYWORD

nonn

AUTHOR

Ali Sada, Jan 16 2020

EXTENSIONS

Data section extended up to a(105) by Antti Karttunen, Apr 29 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 14:36 EDT 2020. Contains 336298 sequences. (Running on oeis4.)