login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331408
Number of subsets of {1..n} that contain exactly three odd numbers.
3
0, 0, 0, 0, 4, 8, 32, 64, 160, 320, 640, 1280, 2240, 4480, 7168, 14336, 21504, 43008, 61440, 122880, 168960, 337920, 450560, 901120, 1171456, 2342912, 2981888, 5963776, 7454720, 14909440, 18350080, 36700160, 44564480, 89128960, 106954752, 213909504, 254017536, 508035072, 597688320
OFFSET
1,5
COMMENTS
2*a(n-1) for n > 1 is the number of subsets of {1..n} that contain three even numbers. For example, for n=6, 2*a(5)=8 and the 8 subsets are {2,4,6}, {1,2,4,6}, {2,3,4,6}, {2,4,5,6}, {1,2,3,4,6}, {1,2,4,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}.
FORMULA
a(n) = binomial((n+1)/2,3) * 2^((n-1)/2), n odd;
a(n) = binomial(n/2,3) * 2^(n/2), n even.
From Colin Barker, Jan 17 2020: (Start)
G.f.: 4*x^5*(1 + 2*x) / (1 - 2*x^2)^4.
a(n) = 8*a(n-2) - 24*a(n-4) + 32*a(n-6) - 16*a(n-8) for n>8. (End)
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=5} 1/a(n) = (9/8)*(2*log(2)-1).
Sum_{n>=5} (-1)^(n+1)/a(n) = (3/8)*(2*log(2)-1). (End)
EXAMPLE
For n = 6, a(6) = 8 and the 8 subsets are {1,3,5}, {1,2,3,5}, {1,3,4,5}, {1,3,5,6}, {1,2,3,4,5}, {1,2,3,5,6}, {1,3,4,5,6}, {1,2,3,4,5,6}.
MATHEMATICA
a[n_] := If[OddQ[n], Binomial[(n + 1)/2, 3]*2^((n - 1)/2), Binomial[n/2, 3]*2^(n/2)]; Array[a, 39] (* Amiram Eldar, Jan 17 2020 *)
PROG
(PARI) concat([0, 0, 0, 0], Vec(4*x^5*(1 + 2*x) / (1 - 2*x^2)^4 + O(x^40))) \\ Colin Barker, Jan 17 2020
(Magma) [IsOdd(n) select Binomial((n+1) div 2, 3)*2^((n-1) div 2) else Binomial((n div 2), 3)*2^(n div 2): n in [1..39]]; // Marius A. Burtea, Jan 17 2020
CROSSREFS
Cf. A330592.
Sequence in context: A050442 A377766 A229953 * A291938 A358046 A094015
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Jan 16 2020
STATUS
approved