login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331409
a(1)=1; for n>1, a(n) = a(n-1)+n, divided by its largest prime factor.
1
1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 4, 8, 3, 1, 8, 8, 5, 1, 4, 8, 1, 1, 8, 16, 1, 9, 12, 8, 1, 1, 16, 16, 7, 1, 12, 16, 1, 3, 6, 2, 1, 1, 4, 16, 1, 1, 16, 32, 27, 7, 2, 18, 1, 5, 12, 4, 1, 1, 12, 24, 5, 1, 32, 32, 1, 1, 4, 24, 3, 1, 24, 32, 15, 1, 4, 16, 3, 27, 2, 2, 1, 1, 12, 32, 9
OFFSET
1,3
LINKS
EXAMPLE
For n=4, a(4) = 2+4 divided by its largest prime factor = 6/3 = 2.
MATHEMATICA
f[n_] := n/FactorInteger[n][[-1, 1]]; a[1] = 1; a[n_] := a[n] = f[a[n - 1] + n]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
nxt[{n_, a_}]:={n+1, (a+n+1)/FactorInteger[a+n+1][[-1, 1]]}; NestList[nxt, {1, 1}, 90][[All, 2]] (* Harvey P. Dale, Nov 12 2022 *)
PROG
(Magma) [n eq 1 select 1 else (Self(n-1)+n) div Max(PrimeDivisors(Self(n-1)+n)): n in [1..85]]; // Marius A. Burtea, Feb 17 2020
(PARI) a(n) = if (n==1, 1, my(x=a(n-1)+n); x/vecmax(factor(x)[, 1])); \\ Michel Marcus, Feb 20 2020
CROSSREFS
Cf. A006530 (largest prime factor), A208884.
Sequence in context: A201757 A053390 A140643 * A108017 A293208 A247364
KEYWORD
nonn
AUTHOR
Ali Sada, Jan 16 2020
STATUS
approved