login
A330592
a(n) is the number of subsets of {1,2,...,n} that contain exactly two odd numbers.
4
0, 0, 2, 4, 12, 24, 48, 96, 160, 320, 480, 960, 1344, 2688, 3584, 7168, 9216, 18432, 23040, 46080, 56320, 112640, 135168, 270336, 319488, 638976, 745472, 1490944, 1720320, 3440640, 3932160, 7864320, 8912896, 17825792, 20054016, 40108032, 44826624, 89653248
OFFSET
1,3
COMMENTS
2*a(n-1) for n>1 is the number of subsets of {1,2,...,n} that contain exactly two even numbers. For example, for n=5, 2*a(4)=8 and the 8 subsets are {2,4}, {1,2,4}, {2,3,4}, {2,4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}, {1,2,3,4,5}. - Enrique Navarrete, Dec 20 2019
FORMULA
a(n) = binomial((n+1)/2,2) * 2^((n-1)/2), n odd;
a(n) = binomial(n/2,2) * 2^(n/2), n even.
G.f.: 2*(2*x+1)*x^3/(1-2*x^2)^3.
a(n) = 6*a(n-2) - 12*a(n-4) + 8*a(n-6) for n>6. - Colin Barker, Dec 20 2019
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=3} 1/a(n) = 3*(1-log(2)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 1-log(2). (End)
EXAMPLE
For n=5, a(5)=12 and the 12 subsets are {1,3}, {1,5}, {3,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}.
MATHEMATICA
a[n_] := If[OddQ[n], Binomial[(n + 1)/2, 2]*2^((n - 1)/2), Binomial[n/2, 2]*2^(n/2)]; Array[a, 38] (* Amiram Eldar, Mar 24 2022 *)
PROG
(Magma) [IsEven(n) select Binomial(n div 2, 2)*2^(n div 2) else Binomial((n+1) div 2, 2)*2^((n-1) div 2):n in [1..40]]; // Marius A. Burtea, Dec 19 2019
(PARI) concat([0, 0], Vec(2*x^3*(1 + 2*x) / (1 - 2*x^2)^3 + O(x^40))) \\ Colin Barker, Dec 20 2019
CROSSREFS
Cf. A089822 (with exactly two primes).
Sequence in context: A230481 A212169 A108720 * A089822 A079352 A089888
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Dec 18 2019
STATUS
approved