login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334861
a(n) = A329697(n) + A331410(n).
8
0, 0, 2, 0, 3, 2, 3, 0, 4, 3, 4, 2, 4, 3, 5, 0, 4, 4, 6, 3, 5, 4, 5, 2, 6, 4, 6, 3, 7, 5, 4, 0, 6, 4, 6, 4, 7, 6, 6, 3, 5, 5, 7, 4, 7, 5, 6, 2, 6, 6, 6, 4, 7, 6, 7, 3, 8, 7, 8, 5, 5, 4, 7, 0, 7, 6, 8, 4, 7, 6, 7, 4, 8, 7, 8, 6, 7, 6, 7, 3, 8, 5, 6, 5, 7, 7, 9, 4, 8, 7, 7, 5, 6, 6, 9, 2, 5, 6, 8, 6, 8, 6, 6, 4, 8
OFFSET
1,3
COMMENTS
Completely additive because A329697 and A331410 are. No 1's occur as terms.
LINKS
FORMULA
a(n) = A329697(n) + A331410(n).
a(2) = 0, a(p) = 2+A329697(p-1)+A331410(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(f[k, 1]+1)))); };
A334861(n) = (A329697(n)+A331410(n));
\\ Or alternatively as:
A334861(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(2+A329697(f[k, 1]-1)+A331410(f[k, 1]+1)))); };
CROSSREFS
Cf. A000079 (positions of zeros), A329697, A331410, A334862.
Sequence in context: A180196 A317843 A326689 * A359674 A323248 A324397
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 14 2020
STATUS
approved