Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 15 2020 04:34:39
%S 0,0,2,0,3,2,3,0,4,3,4,2,4,3,5,0,4,4,6,3,5,4,5,2,6,4,6,3,7,5,4,0,6,4,
%T 6,4,7,6,6,3,5,5,7,4,7,5,6,2,6,6,6,4,7,6,7,3,8,7,8,5,5,4,7,0,7,6,8,4,
%U 7,6,7,4,8,7,8,6,7,6,7,3,8,5,6,5,7,7,9,4,8,7,7,5,6,6,9,2,5,6,8,6,8,6,6,4,8
%N a(n) = A329697(n) + A331410(n).
%C Completely additive because A329697 and A331410 are. No 1's occur as terms.
%H Antti Karttunen, <a href="/A334861/b334861.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = A329697(n) + A331410(n).
%F a(2) = 0, a(p) = 2+A329697(p-1)+A331410(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
%o (PARI)
%o A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); };
%o A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); };
%o A334861(n) = (A329697(n)+A331410(n));
%o \\ Or alternatively as:
%o A334861(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(2+A329697(f[k,1]-1)+A331410(f[k,1]+1)))); };
%Y Cf. A000079 (positions of zeros), A329697, A331410, A334862.
%K nonn
%O 1,3
%A _Antti Karttunen_, May 14 2020