login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330437 Length of trajectory of n under the map n -> n - 1 + n/gpf(n) or 0 if no fixed point is reached, where gpf(n) is the greatest prime factor of n. 4
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 5, 4, 2, 1, 4, 1, 2, 4, 4, 3, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 3, 2, 4, 3, 2, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 2, 2, 1, 4, 2, 2, 1, 4, 2, 3, 2, 4, 1, 2, 2, 4, 4, 4, 3, 2, 1, 3, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
The table of trajectories of n under is given in A329288.
All fixed points, besides 1, are prime.
Conjecture: every number appears in the sequence infinitely many times.
Conjecture: all terms are nonzero, i.e., every trajectory eventually reaches a prime.
LINKS
FORMULA
a(p) = 1 for any prime number p.
EXAMPLE
For n = 26 the trajectory is (26, 27, 35, 39, 41) so a(26) = 5.
MAPLE
g:= n -> n - 1 + n/max(numtheory:-factorset(n)):
f:= proc(n) option remember;
if isprime(n) then 1 else 1+ procname(g(n)) fi
end proc:
f(1):= 1:
map(f, [$1..200]); # Robert Israel, May 01 2020
MATHEMATICA
Clear[f, it, order, seq]; f[n_]:=f[n]=n-1+n/FactorInteger[n][[-1]][[1]]; it[k_, n_]:=it[k, n]=f[it[k, n-1]]; it[k_, 1]=k; order[n_]:=order[n]=SelectFirst[Range[1, 100], it[n, #]==it[n, #+1]&]; Print[order/@Range[1, 100]];
PROG
(PARI) apply( {a(n, c=1)=n>1&&while(n<n+=n/vecmax(factor(n)[, 1])-1, c++); c}, [1..99]) \\ M. F. Hasler, Feb 19 2020
CROSSREFS
Cf. A006530 (greatest prime factor), A329288, A330704 (greedy inverse).
Sequence in context: A113309 A348955 A062362 * A338648 A269252 A291150
KEYWORD
nonn
AUTHOR
Elijah Beregovsky, Feb 16 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 18:03 EDT 2024. Contains 375990 sequences. (Running on oeis4.)