|
|
A330437
|
|
Length of trajectory of n under the map n -> n - 1 + n/gpf(n) or 0 if no fixed point is reached, where gpf(n) is the greatest prime factor of n.
|
|
4
|
|
|
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 5, 4, 2, 1, 4, 1, 2, 4, 4, 3, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 1, 3, 2, 4, 3, 2, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 2, 2, 1, 4, 2, 2, 1, 4, 2, 3, 2, 4, 1, 2, 2, 4, 4, 4, 3, 2, 1, 3, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
The table of trajectories of n under is given in A329288.
All fixed points, besides 1, are prime.
Conjecture: every number appears in the sequence infinitely many times.
Conjecture: all terms are nonzero, i.e., every trajectory eventually reaches a prime.
|
|
LINKS
|
|
|
FORMULA
|
a(p) = 1 for any prime number p.
|
|
EXAMPLE
|
For n = 26 the trajectory is (26, 27, 35, 39, 41) so a(26) = 5.
|
|
MAPLE
|
g:= n -> n - 1 + n/max(numtheory:-factorset(n)):
f:= proc(n) option remember;
if isprime(n) then 1 else 1+ procname(g(n)) fi
end proc:
f(1):= 1:
|
|
MATHEMATICA
|
Clear[f, it, order, seq]; f[n_]:=f[n]=n-1+n/FactorInteger[n][[-1]][[1]]; it[k_, n_]:=it[k, n]=f[it[k, n-1]]; it[k_, 1]=k; order[n_]:=order[n]=SelectFirst[Range[1, 100], it[n, #]==it[n, #+1]&]; Print[order/@Range[1, 100]];
|
|
PROG
|
(PARI) apply( {a(n, c=1)=n>1&&while(n<n+=n/vecmax(factor(n)[, 1])-1, c++); c}, [1..99]) \\ M. F. Hasler, Feb 19 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|