This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270807 Trajectory of 1 under the map n -> n + n/gpf(n) + 1 (see A269304). 4
 1, 3, 5, 7, 9, 13, 15, 19, 21, 25, 31, 33, 37, 39, 43, 45, 55, 61, 63, 73, 75, 91, 99, 109, 111, 115, 121, 133, 141, 145, 151, 153, 163, 165, 181, 183, 187, 199, 201, 205, 211, 213, 217, 225, 271, 273, 295, 301, 309, 313, 315, 361, 381, 385, 421, 423, 433, 435, 451, 463, 465 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Cody M. Haderlie (see A269304) conjectures that the trajectory of any initial value will eventually merge with this sequence. The trajectory of 2, for example, begins 2, 4, 7, 9, 13, 15, 19, 21, 25, ... and from 7 on coincides with this sequence. See A271418. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 PROG (Python) from __future__ import division from sympy import primefactors A270807_list, b = [], 1 for i in range(10000):     A270807_list.append(b)     b += b//(max(primefactors(b)+[1])) + 1 # Chai Wah Wu, Apr 06 2016 (PARI) gpf(n) = if (n==1, 1, vecmax(factor(n)[, 1])); lista(nn) = {a = 1; for (n=1, nn, print1(a, ", "); a = a + a/gpf(a) + 1; ); } \\ Michel Marcus, Apr 06 2016 CROSSREFS Cf. A006530, A269304, A271418. For first differences see A270808. Sequence in context: A224195 A327573 A306069 * A157048 A190857 A003543 Adjacent sequences:  A270804 A270805 A270806 * A270808 A270809 A270810 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 08:15 EDT 2019. Contains 328051 sequences. (Running on oeis4.)