login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270810
Expansion of (x - x^2 + 2*x^3 + 2*x^4)/(1 - 3*x + 2*x^2).
5
0, 1, 2, 6, 16, 36, 76, 156, 316, 636, 1276, 2556, 5116, 10236, 20476, 40956, 81916, 163836, 327676, 655356, 1310716, 2621436, 5242876, 10485756, 20971516, 41943036, 83886076, 167772156, 335544316, 671088636, 1342177276, 2684354556, 5368709116, 10737418236, 21474836476
OFFSET
0,3
LINKS
M. Diepenbroek, M. Maus, A. Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
FORMULA
G.f.: x*(1 - x + 2*x^2 + 2*x^3)/((1 - x)*(1 - 2*x)).
a(n) = 5*2^(n-2)-4 for n>2. - Bruno Berselli, Apr 08 2016
a(n) = 3*a(n-1)-2*a(n-2) for n>4. - Colin Barker, Apr 12 2016
From Paul Curtz, Sep 23 2019: (Start)
a(n+1) = b(n+4) - b(n) where b(n) = 0, 1, 1, 1 followed by A026646.
a(n) = 2*a(n-1)+4 for n>4. (End)
PROG
(Magma) [n le 2 select n else 5*2^(n-2)-4: n in [0..40]]; // Bruno Berselli, Apr 08 2016
(PARI) concat(0, Vec(x*(1-x+2*x^2+2*x^3)/((1-x)*(1-2*x)) + O(x^50))) \\ Colin Barker, Apr 12 2016
CROSSREFS
Agrees with A048487 except for initial terms.
Sequence in context: A127902 A157136 A178523 * A366098 A227035 A257198
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 06 2016
STATUS
approved