login
A265278
Expansion of (x^4+x^3-x^2+x)/(x^3+x^2-3*x+1).
8
0, 1, 2, 6, 16, 40, 98, 238, 576, 1392, 3362, 8118, 19600, 47320, 114242, 275806, 665856, 1607520, 3880898, 9369318, 22619536, 54608392, 131836322, 318281038, 768398400, 1855077840, 4478554082, 10812186006, 26102926096, 63018038200, 152139002498, 367296043198
OFFSET
0,3
LINKS
Marika Diepenbroek, Monica Maus, and Alex Stoll, Pattern Avoidance in Reverse Double Lists, Preprint 2015. See Table 3.
Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 41.
FORMULA
From Colin Barker, Apr 12 2016: (Start)
a(n) = (-2 + (1-sqrt(2))^n + (1+sqrt(2))^n)/2 for n>1.
a(n) = 3*a(n-1)-a(n-2)-a(n-3) for n>4.
(End)
E.g.f.: x + (cosh(sqrt(2)*x) - 1)*exp(x). - Ilya Gutkovskiy, Sep 16 2016
MATHEMATICA
Table[2 Fibonacci[n-1, 2] + LucasL[n-1, 2]/2 + KroneckerDelta[n-1] - 1, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
LinearRecurrence[{3, -1, -1}, {0, 1, 2, 6, 16}, 40] (* Harvey P. Dale, Mar 18 2018 *)
PROG
(PARI) concat(0, Vec(x*(1-x+x^2+x^3)/((1-x)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Apr 12 2016
CROSSREFS
Agrees with A213667 except for initial terms.
Sequence in context: A302239 A264551 A293004 * A378947 A111281 A018021
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Apr 06 2016
STATUS
approved