login
A378947
Number of row states in an automaton for the enumeration of the number of fixed polyominoes with bounding box of width n.
0
1, 2, 6, 16, 40, 99, 247, 625, 1605, 4178, 11006, 29292, 78652, 212812, 579672, 1588242, 4374282, 12103404, 33628824, 93786966, 262450878, 736710357, 2073834417, 5853011847, 16558618507, 46949351272, 133390812252, 379708642286, 1082797114046, 3092894319075, 8848275403639
OFFSET
0,2
COMMENTS
The states track the non-crossing partitions of the connected components and whether each side of the bounding rectangle has been reached.
a(n) is an upper bound on the order of the generating function of row n of A292357.
LINKS
Louis Marin, Counting Polyominoes in a Rectangle b x h, arXiv:2406.16413 [cs.DM], 2024; EPTCS 403, 2024, pp. 145-149.
FORMULA
a(n) = 1 + Sum_{m=1..2^n-1} A000108(A069010(m)) * 2^[m=0 mod 2] * 2^[m<2^(n-1)], where [] is the Iverson bracket.
From Andrew Howroyd, Dec 17 2024: (Start)
a(n) = 1 + Sum_{k=1..floor((n+1)/2)} (binomial(n+1, 2*k) + 2*binomial(n,2*k) + binomial(n-1,2*k)) * binomial(2*k, k)/(k+1).
a(n) = A001006(n+1) + 2*A001006(n) + A001006(n-1) - 3 for n > 0. (End)
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 2, 6][n+1],
((3*n^2+2*n-12)*a(n-1)+(n^2-13*n+15)*a(n-2)
-3*(n-3)*(n-1)*a(n-3))/((n-2)*(n+3)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Dec 20 2024
MATHEMATICA
a[n_] := a[n] = If[n < 3, {1, 2, 6}[[n+1]],
((3*n^2 + 2*n - 12)*a[n-1] + (n^2 - 13*n + 15)*a[n-2]
- 3*(n-3)*(n-1)*a[n-3])/((n-2)*(n+3))];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 26 2025, after Alois P. Heinz *)
PROG
(PARI) b(n) = (1 + (hammingweight(bitxor(n, n>>1)))) >> 1;
C(n) = binomial(2*n, n)/(n+1);
a(n) = 1 + sum(m=1, 2^n-1, C(b(m)) * 2^((m % 2)==0) * 2^(m<2^(n-1))); \\ Michel Marcus, Dec 12 2024
(PARI) a(n) = {1 + sum(k=1, (n+1)\2, (binomial(n+1, 2*k)+2*binomial(n, 2*k)+binomial(n-1, 2*k))*binomial(2*k, k)/(k+1))} \\ Andrew Howroyd, Dec 17 2024
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Louis Marin, Dec 11 2024
EXTENSIONS
More terms from Michel Marcus, Dec 12 2024
a(26) onwards from Andrew Howroyd, Dec 17 2024
STATUS
approved