The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A215340 Expansion of series_reversion( x/(1 + sum(k>=1, x^A032766(k)) ) ) / x. 12
1, 1, 1, 2, 6, 16, 40, 107, 307, 893, 2597, 7646, 22878, 69162, 210402, 644098, 1984598, 6149428, 19143220, 59840692, 187781992, 591343894, 1868106990, 5918537492, 18800935948, 59869902152, 191081899648, 611138052146, 1958410654202, 6287175115130, 20218209139666, 65120537016867 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Number of Dyck n-paths avoiding ascents of length == 2 mod 3, see example. - David Scambler, Apr 16 2013
This is a special case of the following: let S be a set of positive numbers, r(x) = x/(1 + sum(e in S, x^e)), and f(x)=series_reversion(r(x)) / x, then f is the g.f. for the number of Dyck words of semilength n with substrings UUU...UU only of lengths e in S (that is, all ascent lengths are in S). [Joerg Arndt, Apr 16 2013]
LINKS
FORMULA
G.f. A(x) satisfies 0 = -x^3*A(x)^4 + (-x + 1)*A(x) - 1. [Joerg Arndt, Mar 01 2014]
Recurrence: 27*(n-1)*n*(n+1)*(2*n-5)*(4*n-11)*(4*n-7)*a(n) = 9*(n-1)*n*(4*n-11)*(96*n^3 - 456*n^2 + 616*n - 197)*a(n-1) - 3*(n-1)*(1728*n^5 - 15552*n^4 + 53164*n^3 - 85322*n^2 + 63369*n - 17010)*a(n-2) + (4*n-9)*(4*n-3)*(728*n^4 - 6188*n^3 + 19267*n^2 - 25987*n + 12810)*a(n-3) - 3*(n-3)*(2*n-3)*(3*n-10)*(3*n-8)*(4*n-7)*(4*n-3)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ sqrt(2*(3+r)/(3*(1-r)^3)) / (3*sqrt(Pi)*n^(3/2)*r^n), where r = 0.295932936709444136... is the root of the equation 27*(1-r)^4 = 256*r^3. - Vaclav Kotesovec, Mar 22 2014
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1, n - 3*k)*binomial(n + k, n). - Peter Bala, Aug 02 2016
EXAMPLE
The 16 Dyck words of semilength 5 without substrings UUU..UU of length 2, 5, 8, etc. (using '1' for U and '.' for D) are
01: 1.1.1.1.1.
02: 1.1.111...
03: 1.111...1.
04: 1.111..1..
05: 1.111.1...
06: 1.1111....
07: 111...1.1.
08: 111..1..1.
09: 111..1.1..
10: 111.1...1.
11: 111.1..1..
12: 111.1.1...
13: 1111....1.
14: 1111...1..
15: 1111..1...
16: 1111.1....
- Joerg Arndt, Apr 16 2013
MAPLE
b:= proc(x, y, t) option remember;
`if`(y<x, 0, `if`(y=0, `if`(t=2, 0, 1),
`if`(x>0 and t<>2, b(x-1, y, 0), 0)+b(x, y-1, irem(t+1, 3))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 16 2013
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y<x, 0, If[y==0, If[t==2, 0, 1], If[x>0 && t != 2, b[x-1, y, 0], 0] + b[x, y-1, Mod[t+1, 3]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
rf = x/(1+sum(n=1, N, ((n%3)!=2)*x^n ) );
gf = serreverse(rf)/x;
v = Vec(gf)
CROSSREFS
Cf. A215341.
Sequence in context: A265278 A111281 A018021 * A074405 A068786 A276359
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt, Aug 19 2012
EXTENSIONS
Modified definition to obtain offset 0 for combinatorial interpretation, Joerg Arndt, Apr 16 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 18:11 EDT 2024. Contains 373359 sequences. (Running on oeis4.)