login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215340
Expansion of series_reversion( x/(1 + sum(k>=1, x^A032766(k)) ) ) / x.
12
1, 1, 1, 2, 6, 16, 40, 107, 307, 893, 2597, 7646, 22878, 69162, 210402, 644098, 1984598, 6149428, 19143220, 59840692, 187781992, 591343894, 1868106990, 5918537492, 18800935948, 59869902152, 191081899648, 611138052146, 1958410654202, 6287175115130, 20218209139666, 65120537016867
OFFSET
0,4
COMMENTS
Number of Dyck n-paths avoiding ascents of length == 2 mod 3, see example. - David Scambler, Apr 16 2013
This is a special case of the following: let S be a set of positive numbers, r(x) = x/(1 + sum(e in S, x^e)), and f(x)=series_reversion(r(x)) / x, then f is the g.f. for the number of Dyck words of semilength n with substrings UUU...UU only of lengths e in S (that is, all ascent lengths are in S). [Joerg Arndt, Apr 16 2013]
LINKS
FORMULA
G.f. A(x) satisfies 0 = -x^3*A(x)^4 + (-x + 1)*A(x) - 1. [Joerg Arndt, Mar 01 2014]
Recurrence: 27*(n-1)*n*(n+1)*(2*n-5)*(4*n-11)*(4*n-7)*a(n) = 9*(n-1)*n*(4*n-11)*(96*n^3 - 456*n^2 + 616*n - 197)*a(n-1) - 3*(n-1)*(1728*n^5 - 15552*n^4 + 53164*n^3 - 85322*n^2 + 63369*n - 17010)*a(n-2) + (4*n-9)*(4*n-3)*(728*n^4 - 6188*n^3 + 19267*n^2 - 25987*n + 12810)*a(n-3) - 3*(n-3)*(2*n-3)*(3*n-10)*(3*n-8)*(4*n-7)*(4*n-3)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ sqrt(2*(3+r)/(3*(1-r)^3)) / (3*sqrt(Pi)*n^(3/2)*r^n), where r = 0.295932936709444136... is the root of the equation 27*(1-r)^4 = 256*r^3. - Vaclav Kotesovec, Mar 22 2014
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1, n - 3*k)*binomial(n + k, n). - Peter Bala, Aug 02 2016
EXAMPLE
The 16 Dyck words of semilength 5 without substrings UUU..UU of length 2, 5, 8, etc. (using '1' for U and '.' for D) are
01: 1.1.1.1.1.
02: 1.1.111...
03: 1.111...1.
04: 1.111..1..
05: 1.111.1...
06: 1.1111....
07: 111...1.1.
08: 111..1..1.
09: 111..1.1..
10: 111.1...1.
11: 111.1..1..
12: 111.1.1...
13: 1111....1.
14: 1111...1..
15: 1111..1...
16: 1111.1....
- Joerg Arndt, Apr 16 2013
MAPLE
b:= proc(x, y, t) option remember;
`if`(y<x, 0, `if`(y=0, `if`(t=2, 0, 1),
`if`(x>0 and t<>2, b(x-1, y, 0), 0)+b(x, y-1, irem(t+1, 3))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 16 2013
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y<x, 0, If[y==0, If[t==2, 0, 1], If[x>0 && t != 2, b[x-1, y, 0], 0] + b[x, y-1, Mod[t+1, 3]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
rf = x/(1+sum(n=1, N, ((n%3)!=2)*x^n ) );
gf = serreverse(rf)/x;
v = Vec(gf)
CROSSREFS
Cf. A215341.
Sequence in context: A378947 A111281 A018021 * A074405 A068786 A276359
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt, Aug 19 2012
EXTENSIONS
Modified definition to obtain offset 0 for combinatorial interpretation, Joerg Arndt, Apr 16 2013
STATUS
approved