login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215338
Cyclically smooth Lyndon words with 7 colors.
2
7, 6, 12, 23, 56, 118, 292, 683, 1692, 4180, 10604, 26978, 69720, 181162, 475072, 1252756, 3324096, 8861054, 23729740, 63786792, 172066648, 465566598, 1263208676, 3435891568, 9366558088, 25585826404, 70019830220, 191943097314, 526978629656, 1448862393216, 3988658225028, 10993822451304, 30335737458872, 83793421017568
OFFSET
1,1
COMMENTS
We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1.
LINKS
Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
FORMULA
a(n) = sum_{ d divides n } moebius(n/d) * A208776(d).
EXAMPLE
The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 7 colors (using symbols ".", "1", "2", "3", "4", "5", and "6") are:
.... 1 . N
...1 4 ...1 N L
..11 4 ..11 N L
.1.1 2 .1 N
.111 4 .111 N L
.121 4 .121 N L
1111 1 1 N
1112 4 1112 N L
1122 4 1122 N L
1212 2 12 N
1222 4 1222 N L
1232 4 1232 N L
2222 1 2 N
2223 4 2223 N L
2233 4 2233 N L
2323 2 23 N
2333 4 2333 N L
2343 4 2343 N L
3333 1 3 N
3334 4 3334 N L
3344 4 3344 N L
3434 2 34 N
3444 4 3444 N L
3454 4 3454 N L
4444 1 4 N
4445 4 4445 N L
4455 4 4455 N L
4545 2 45 N
4555 4 4555 N L
4565 4 4565 N L
5555 1 5 N
5556 4 5556 N L
5566 4 5566 N L
5656 2 56 N
5666 4 5666 N L
6666 1 6 N
There are 36 necklaces (so A208776(4)=36) and a(4)=23 Lyndon words.
MATHEMATICA
terms = 40;
sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}];
vn = Table[Round[sn[n, 7]], {n, terms}];
vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
PROG
(PARI)
default(realprecision, 99); /* using floats */
sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
vn=vector(66, n, round(sn(n, 7)) ); /* necklaces */
/* Lyndon words, via Moebius inversion: */
vl=vector(#vn, n, sumdiv(n, d, moebius(n/d)*vn[d]))
CROSSREFS
Cf. A208776 (cyclically smooth necklaces, 7 colors).
Cf. A215333 (smooth necklaces, 7 colors), A215334 (smooth Lyndon words, 7 colors).
Sequence in context: A281313 A082121 A309622 * A176414 A297153 A363325
KEYWORD
nonn
AUTHOR
Joerg Arndt, Aug 13 2012
STATUS
approved