login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215335
Cyclically smooth Lyndon words with 3 colors.
2
3, 2, 4, 7, 16, 30, 68, 140, 308, 664, 1476, 3248, 7280, 16286, 36768, 83160, 189120, 431046, 986244, 2261616, 5200776, 11984382, 27676612, 64031520, 148406224, 344500520, 800902564, 1864486560, 4346071600, 10142581552, 23696518916, 55420651440, 129742921992, 304014466080, 712985901856, 1673486122000
OFFSET
1,1
COMMENTS
We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1.
LINKS
Latham Boyle, Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
FORMULA
a(n) = sum_{ d divides n } moebius(n/d) * A208772(d).
EXAMPLE
The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 3 colors (using symbols ".", "1", and "2") are:
.... 1 . N
...1 4 ...1 N L
..11 4 ..11 N L
.1.1 2 .1 N
.111 4 .111 N L
.121 4 .121 N L
1111 1 1 N
1112 4 1112 N L
1122 4 1122 N L
1212 2 12 N
1222 4 1222 N L
2222 1 2 N
There are 12 necklaces (so A208772(4)=12) and a(4)=7 Lyndon words.
MATHEMATICA
terms = 40;
sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}];
vn = Table[Round[sn[n, 3]], {n, terms}];
vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
PROG
(PARI)
default(realprecision, 99); /* using floats */
sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
vn=vector(66, n, round(sn(n, 3)) ); /* necklaces */
/* Lyndon words, via Moebius inversion: */
vl=vector(#vn, n, sumdiv(n, d, moebius(n/d)*vn[d]))
CROSSREFS
Cf. A208772 (cyclically smooth necklaces, 3 colors).
Cf. A215327 (smooth necklaces, 3 colors), A215328 (smooth Lyndon words, 3 colors).
Sequence in context: A102787 A014193 A128885 * A229976 A084695 A317704
KEYWORD
nonn
AUTHOR
Joerg Arndt, Aug 13 2012
STATUS
approved