OFFSET
1,7
FORMULA
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} (c(i) + c(j) + c(k) + c(l) + c(m) + c(o) + c(n-i-j-k-l-m-o)), where c(x) = [gcd(n,x) = 1] and [ ] is the Iverson bracket.
EXAMPLE
The partitions of 10 into 7 parts are: 1+1+1+1+1+1+4, 1+1+1+1+1+2+3, and 1+1+1+1+2+2+2. 10 is coprime to 1 and 3. Since there are 16 total parts in these partitions that are coprime to 10, a(10) = 16.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 27 2023
STATUS
approved