|
|
A363278
|
|
Total number of parts coprime to n in the partitions of n into 3 parts.
|
|
7
|
|
|
0, 0, 3, 2, 6, 3, 12, 8, 15, 10, 30, 12, 42, 21, 32, 32, 72, 27, 90, 40, 66, 55, 132, 48, 130, 78, 126, 84, 210, 60, 240, 128, 170, 136, 216, 108, 342, 171, 240, 160, 420, 126, 462, 220, 276, 253, 552, 192, 525, 250, 416, 312, 702, 243, 560, 336, 522, 406, 870, 240, 930, 465
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ([gcd(n,n-i-j) = 1] + [gcd(n,i) = 1] + [gcd(n,j) = 1]), where [ ] is the Iverson Bracket.
|
|
EXAMPLE
|
The partitions of 5 into 3 parts are: 3+1+1 and 2+2+1. 5 is coprime to 1, 2 and 3. Since there are 6 total parts in the partitions of 5 that are coprime to 5, a(5) = 6.
|
|
MATHEMATICA
|
Table[Sum[Sum[KroneckerDelta[GCD[n, n - i - j], 1] + KroneckerDelta[GCD[n, j], 1] + KroneckerDelta[GCD[n, i], 1], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 100}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|