login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363281
Numbers which are the sum of 4 squares of distinct primes.
1
87, 159, 183, 199, 204, 207, 231, 247, 252, 303, 319, 324, 327, 343, 348, 351, 364, 367, 372, 399, 423, 439, 444, 463, 468, 471, 484, 487, 492, 495, 511, 516, 532, 535, 540, 543, 556, 559, 564, 567, 583, 588, 591, 604, 607, 612, 628, 655, 660, 663, 676, 679, 684, 700, 703, 708
OFFSET
1,1
LINKS
EXAMPLE
87 is a term as 87 = 2^2 + 3^2 + 5^2 + 7^2.
MATHEMATICA
Select[Range@1000,
Length[PowersRepresentations[#, 4, 2] // Select[AllTrue@PrimeQ] //
Select[DuplicateFreeQ]] > 0 &]
PROG
(Python)
from itertools import combinations as comb
ps=[p**2 for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]]
a=[n for n in range(1001) if n in [sum(n) for n in list(comb(ps, 4))]]
print(a)
(PARI) upto(n) = {if(n <= 86, return([])); my(pr = primes(primepi(sqrtint(n - 38))), res = List()); forvec(v = vector(4, i, [1, #pr]), c = sum(i = 1, #v, pr[v[i]]^2); if(c <= n, listput(res, c)), 2); listsort(res, 1); res} \\ David A. Corneth, Jul 12 2023
CROSSREFS
Sequence in context: A095567 A205672 A039489 * A031891 A147140 A044257
KEYWORD
easy,nonn
AUTHOR
Zhining Yang, May 25 2023
STATUS
approved