login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363327
Total number of parts coprime to n in the partitions of n into 9 parts.
7
0, 0, 0, 0, 0, 0, 0, 0, 9, 8, 18, 21, 45, 48, 88, 96, 198, 153, 369, 298, 542, 533, 1107, 673, 1695, 1375, 2280, 2017, 4392, 1962, 6588, 4668, 7337, 6695, 11924, 6703, 19746, 13220, 20416, 15497, 37854, 15056, 51372, 31987, 43358, 43930, 91404, 39701, 111571, 62525
OFFSET
1,9
FORMULA
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} (c(i) + c(j) + c(k) + c(l) + c(m) + c(o) + c(p) + c(q) + c(n-i-j-k-l-m-o-p-q)), where c(x) = [gcd(n,x) = 1] and [ ] is the Iverson bracket.
EXAMPLE
The partitions of 12 into 9 parts are: 1+1+1+1+1+1+1+1+4, 1+1+1+1+1+1+1+2+3, and 1+1+1+1+1+1+2+2+2. 12 is coprime to 1, but not 2, 3, or 4. Since there are 21 total parts in these partitions that are coprime to 12, a(12) = 21.
MATHEMATICA
Table[Count[Flatten[IntegerPartitions[n, {9}]], _?(CoprimeQ[#, n]&)], {n, 50}] (* Harvey P. Dale, Sep 10 2024 *)
CROSSREFS
For similar sequences into k parts for k = 2..10, see: A000010(n>2) (k=2), A363278 (k=3), A363322 (k=4), A363323 (k=5), A363324 (k=6), A363325 (k=7), A363326 (k=8), this sequence (k=9), A363328 (k=10).
Sequence in context: A231483 A309656 A370882 * A309657 A296615 A340446
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 27 2023
STATUS
approved