Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 10 2024 12:58:18
%S 0,0,0,0,0,0,0,0,9,8,18,21,45,48,88,96,198,153,369,298,542,533,1107,
%T 673,1695,1375,2280,2017,4392,1962,6588,4668,7337,6695,11924,6703,
%U 19746,13220,20416,15497,37854,15056,51372,31987,43358,43930,91404,39701,111571,62525
%N Total number of parts coprime to n in the partitions of n into 9 parts.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} (c(i) + c(j) + c(k) + c(l) + c(m) + c(o) + c(p) + c(q) + c(n-i-j-k-l-m-o-p-q)), where c(x) = [gcd(n,x) = 1] and [ ] is the Iverson bracket.
%e The partitions of 12 into 9 parts are: 1+1+1+1+1+1+1+1+4, 1+1+1+1+1+1+1+2+3, and 1+1+1+1+1+1+2+2+2. 12 is coprime to 1, but not 2, 3, or 4. Since there are 21 total parts in these partitions that are coprime to 12, a(12) = 21.
%t Table[Count[Flatten[IntegerPartitions[n,{9}]],_?(CoprimeQ[#,n]&)],{n,50}] (* _Harvey P. Dale_, Sep 10 2024 *)
%Y For similar sequences into k parts for k = 2..10, see: A000010(n>2) (k=2), A363278 (k=3), A363322 (k=4), A363323 (k=5), A363324 (k=6), A363325 (k=7), A363326 (k=8), this sequence (k=9), A363328 (k=10).
%K nonn,easy
%O 1,9
%A _Wesley Ivan Hurt_, May 27 2023