login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Cyclically smooth Lyndon words with 7 colors.
2

%I #12 Jul 22 2018 10:43:11

%S 7,6,12,23,56,118,292,683,1692,4180,10604,26978,69720,181162,475072,

%T 1252756,3324096,8861054,23729740,63786792,172066648,465566598,

%U 1263208676,3435891568,9366558088,25585826404,70019830220,191943097314,526978629656,1448862393216,3988658225028,10993822451304,30335737458872,83793421017568

%N Cyclically smooth Lyndon words with 7 colors.

%C We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1.

%H Vincenzo Librandi, <a href="/A215338/b215338.txt">Table of n, a(n) for n = 1..200</a>

%H Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, <a href="http://arxiv.org/abs/0809.0551">Smooth words and Chebyshev polynomials</a>, arXiv:0809.0551v1 [math.CO], 2008.

%F a(n) = sum_{ d divides n } moebius(n/d) * A208776(d).

%e The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 7 colors (using symbols ".", "1", "2", "3", "4", "5", and "6") are:

%e .... 1 . N

%e ...1 4 ...1 N L

%e ..11 4 ..11 N L

%e .1.1 2 .1 N

%e .111 4 .111 N L

%e .121 4 .121 N L

%e 1111 1 1 N

%e 1112 4 1112 N L

%e 1122 4 1122 N L

%e 1212 2 12 N

%e 1222 4 1222 N L

%e 1232 4 1232 N L

%e 2222 1 2 N

%e 2223 4 2223 N L

%e 2233 4 2233 N L

%e 2323 2 23 N

%e 2333 4 2333 N L

%e 2343 4 2343 N L

%e 3333 1 3 N

%e 3334 4 3334 N L

%e 3344 4 3344 N L

%e 3434 2 34 N

%e 3444 4 3444 N L

%e 3454 4 3454 N L

%e 4444 1 4 N

%e 4445 4 4445 N L

%e 4455 4 4455 N L

%e 4545 2 45 N

%e 4555 4 4555 N L

%e 4565 4 4565 N L

%e 5555 1 5 N

%e 5556 4 5556 N L

%e 5566 4 5566 N L

%e 5656 2 56 N

%e 5666 4 5666 N L

%e 6666 1 6 N

%e There are 36 necklaces (so A208776(4)=36) and a(4)=23 Lyndon words.

%t terms = 40;

%t sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}];

%t vn = Table[Round[sn[n, 7]], {n, terms}];

%t vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* _Jean-François Alcover_, Jul 22 2018, after _Joerg Arndt_ *)

%o (PARI)

%o default(realprecision,99); /* using floats */

%o sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));

%o vn=vector(66,n, round(sn(n,7)) ); /* necklaces */

%o /* Lyndon words, via Moebius inversion: */

%o vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d]))

%Y Cf. A208776 (cyclically smooth necklaces, 7 colors).

%Y Cf. A215333 (smooth necklaces, 7 colors), A215334 (smooth Lyndon words, 7 colors).

%K nonn

%O 1,1

%A _Joerg Arndt_, Aug 13 2012