login
A208776
Number of n-bead necklaces labeled with numbers 1..7 not allowing reversal, with no adjacent beads differing by more than 1.
4
7, 13, 19, 36, 63, 143, 299, 719, 1711, 4249, 10611, 27144, 69727, 181467, 475147, 1253475, 3324103, 8862889, 23729747, 63791064, 172066959, 465577215, 1263208683, 3435919395, 9366558151, 25585896137, 70019831931, 191943278804, 526978629663, 1448862872667, 3988658225035, 10993823704779, 30335737469495, 83793424341677
OFFSET
1,1
LINKS
Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
FORMULA
a(n) = Sum_{ d | n } A215338(d). - Joerg Arndt, Aug 13 2012
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124700(n). - Andrew Howroyd, Mar 18 2017
EXAMPLE
All solutions for n=3:
..3....2....6....4....4....1....5....2....2....6....3....3....5....6....5....1
..3....3....6....4....4....1....5....2....2....7....4....3....6....6....5....2
..4....3....6....5....4....1....5....3....2....7....4....3....6....7....6....2
..
..4....7....1
..5....7....1
..5....7....2
MATHEMATICA
sn[n_, k_] := 1/n*Sum[ DivisorSum[n, EulerPhi[#]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/#) &], {i, 1, k}]; Table[sn[n, 7], {n, 1, 34}] // FullSimplify (* Jean-François Alcover, Oct 31 2017, after Joerg Arndt *)
PROG
(PARI)
/* from the Knopfmacher et al. reference */
default(realprecision, 99); /* using floats */
sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
vector(66, n, round(sn(n, 7)) )
/* Joerg Arndt, Aug 09 2012 */
CROSSREFS
Column 7 of A208777.
Cf. A215338 (cyclically smooth Lyndon words with 7 colors).
Sequence in context: A048375 A198035 A208720 * A108295 A071923 A344045
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2012
STATUS
approved