login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208776
Number of n-bead necklaces labeled with numbers 1..7 not allowing reversal, with no adjacent beads differing by more than 1.
4
7, 13, 19, 36, 63, 143, 299, 719, 1711, 4249, 10611, 27144, 69727, 181467, 475147, 1253475, 3324103, 8862889, 23729747, 63791064, 172066959, 465577215, 1263208683, 3435919395, 9366558151, 25585896137, 70019831931, 191943278804, 526978629663, 1448862872667, 3988658225035, 10993823704779, 30335737469495, 83793424341677
OFFSET
1,1
LINKS
Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
FORMULA
a(n) = Sum_{ d | n } A215338(d). - Joerg Arndt, Aug 13 2012
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124700(n). - Andrew Howroyd, Mar 18 2017
EXAMPLE
All solutions for n=3:
..3....2....6....4....4....1....5....2....2....6....3....3....5....6....5....1
..3....3....6....4....4....1....5....2....2....7....4....3....6....6....5....2
..4....3....6....5....4....1....5....3....2....7....4....3....6....7....6....2
..
..4....7....1
..5....7....1
..5....7....2
MATHEMATICA
sn[n_, k_] := 1/n*Sum[ DivisorSum[n, EulerPhi[#]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/#) &], {i, 1, k}]; Table[sn[n, 7], {n, 1, 34}] // FullSimplify (* Jean-François Alcover, Oct 31 2017, after Joerg Arndt *)
PROG
(PARI)
/* from the Knopfmacher et al. reference */
default(realprecision, 99); /* using floats */
sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
vector(66, n, round(sn(n, 7)) )
/* Joerg Arndt, Aug 09 2012 */
CROSSREFS
Column 7 of A208777.
Cf. A215338 (cyclically smooth Lyndon words with 7 colors).
Sequence in context: A048375 A198035 A208720 * A108295 A071923 A344045
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2012
STATUS
approved