OFFSET
2,1
COMMENTS
Theorem: a(n) > n^(n*log(2)). Proof: if k=(d_m...d_2d_1d_0)_n, and K=(d_m...d_2d_1d_0)_{n+1} then K <= k*(1+1/n)^m. Suppose k=a(n). Then K >= 2*k, hence (1+1/n)^m >= 2, and therefore m >= log(2)/log(1+1/n) > n*log(2). Since d_m can be assumed to be >= 1, we may assume that k >= n^m, and this yields k > n^(n*log(2)). - Dimiter Skordev, Mar 14 2020
EXAMPLE
a(5) = 697 = (10242)_5 and (10242)_6 = 1394 = 2 * 697.
a(7) = 7830448093388 = (1435505542406624)_7, which when interpreted in base 8 is equal to 7 * 7830448093388.
MATHEMATICA
a[n_] := Block[{k = n}, While[ Mod[ FromDigits[ IntegerDigits[k, n], n + 1], k] > 0, k++]; k]; a /@ Range[2, 6]
PROG
(Python)
def BaseUp(n, b):
up, b1 = 0, 1
while n > 0:
up, b1, n = up+(n%b)*b1, b1*(b+1), n//b
return up
n = 2
while n < 20:
k = n
while BaseUp(k, n)%k != 0:
k = k+1
print(n, k)
n = n+1 # A.H.M. Smeets, Mar 31 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Dec 14 2019
STATUS
approved