login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171192
G.f. satisfies A(x) = 1/(1 - x*A(2x)^2).
10
1, 1, 5, 53, 1045, 37941, 2596693, 343615093, 89402126741, 46139256172725, 47433024462021589, 97333484052884523765, 399068205440018335950357, 3270764880283567936326235445, 53601302478763156422575938811989
OFFSET
0,3
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-1} 2^(i+j) * a(i) * a(j) * a(n-i-j-1). - Ilya Gutkovskiy, Nov 03 2021
a(n) ~ c * 2^(n*(n+1)/2), where c = 1.3216968146657309382653061124105846042506... - Vaclav Kotesovec, Nov 03 2021
MATHEMATICA
nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 - x*A[2*x]^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Nov 03 2021 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1/(1-x*subst(A, x, 2*x)^2) ); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2009
STATUS
approved